论文标题

具有高斯过程的粗糙表面模型

Model of rough surfaces with Gaussian processes

论文作者

Jawaid, Arsalan, Seewig, Jörg

论文摘要

表面粗糙度起着至关重要的作用,并且在例如流体动力学或接触力学。例如,为了评估不同粗糙度特性下的流体行为,进行了现实世界或数值实验。粗糙表面的数值模拟可以加快这些研究,因为它们可以帮助收集更多相关的信息。但是,在当前方法中,很难用确定性或结构化组件模拟粗糙表面。在这项工作中,我们提出了一种新颖的方法,可以使用高斯工艺(GP)和噪声模型模拟粗糙表面,因为GP可以对结构化和周期性元素进行建模。 GPS概括了传统方法,并且不仅限于平稳性,因此它们可以模拟更广泛的粗糙表面。在本文中,我们总结了与自动回归运动平均过程的GP的理论相似性,并介绍了GPS的线性过程视图。我们还展示了由预定义模型模拟的地面和磨练表面的示例。所提出的方法也可以用于拟合模型以测量粗糙表面的数据。特别是,我们将其证明为固有周期性的模型转换曲线和表面。

Surface roughness plays a critical role and has effects in, e.g. fluid dynamics or contact mechanics. For example, to evaluate fluid behavior at different roughness properties, real-world or numerical experiments are performed. Numerical simulations of rough surfaces can speed up these studies because they can help collect more relevant information. However, it is hard to simulate rough surfaces with deterministic or structured components in current methods. In this work, we present a novel approach to simulate rough surfaces with a Gaussian process (GP) and a noise model because GPs can model structured and periodic elements. GPs generalize traditional methods and are not restricted to stationarity so they can simulate a wider range of rough surfaces. In this paper, we summarize the theoretical similarities of GPs with auto-regressive moving-average processes and introduce a linear process view of GPs. We also show examples of ground and honed surfaces simulated by a predefined model. The proposed method can also be used to fit a model to measurement data of a rough surface. In particular, we demonstrate this to model turned profiles and surfaces that are inherently periodic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源