论文标题

IBL-NERF:基于图像的神经辐射场的照明公式

IBL-NeRF: Image-Based Lighting Formulation of Neural Radiance Fields

论文作者

Choi, Changwoon, Kim, Juhyeon, Kim, Young Min

论文摘要

我们提出了IBL-NERF,该IBL-NERF将大规模室内场景的神经辐射场(NERF)分解为内在组件。最近的方法进一步将隐式体积的烘焙辐射分解为固有组件,从而可以部分近似渲染方程。但是,它们仅限于代表具有共同环境照明的孤立物体,并且遭受计算负担到蒙特卡洛整合的聚合射线。相比之下,除表面性能外,我们的预滤光度场扩展了原始的NERF公式,以捕获场景体积内照明的空间变化。具体而言,各种材料的场景被分解为固有组件,用于渲染,即反照率,粗糙度,表面正常,辐照度和预滤光度。所有组件均被推断为MLP的神经图像,可以对大规模的一般场景进行建模。尤其是预滤光度有效地对体积光场进行建模,并捕获超出单个环境光的空间变化。在一组预定义的邻域大小中的预滤堆射线,以便我们可以用神经图像的简单查询代替昂贵的蒙特卡洛整合整体照明的整合。通过采用NERF,我们的方法继承了综合图像以及固有组件的卓越视觉质量和多视图一致性。我们演示了具有复杂对象布局和灯光配置的场景上的性能,这在以前的任何作品中都无法处理。

We propose IBL-NeRF, which decomposes the neural radiance fields (NeRF) of large-scale indoor scenes into intrinsic components. Recent approaches further decompose the baked radiance of the implicit volume into intrinsic components such that one can partially approximate the rendering equation. However, they are limited to representing isolated objects with a shared environment lighting, and suffer from computational burden to aggregate rays with Monte Carlo integration. In contrast, our prefiltered radiance field extends the original NeRF formulation to capture the spatial variation of lighting within the scene volume, in addition to surface properties. Specifically, the scenes of diverse materials are decomposed into intrinsic components for rendering, namely, albedo, roughness, surface normal, irradiance, and prefiltered radiance. All of the components are inferred as neural images from MLP, which can model large-scale general scenes. Especially the prefiltered radiance effectively models the volumetric light field, and captures spatial variation beyond a single environment light. The prefiltering aggregates rays in a set of predefined neighborhood sizes such that we can replace the costly Monte Carlo integration of global illumination with a simple query from a neural image. By adopting NeRF, our approach inherits superior visual quality and multi-view consistency for synthesized images as well as the intrinsic components. We demonstrate the performance on scenes with complex object layouts and light configurations, which could not be processed in any of the previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源