论文标题

Topgen:拓扑意识到的自下而上的发电机,用于变异量子电路

TopGen: Topology-Aware Bottom-Up Generator for Variational Quantum Circuits

论文作者

Cheng, Jinglei, Wang, Hanrui, Liang, Zhiding, Shi, Yiyu, Han, Song, Qian, Xuehai

论文摘要

变异量子算法(VQA)有望在近期设备上证明量子优势。设计ANSATZ是一种具有参数化门的变分电路,对于VQA奠定了参数优化的基础,对于VQA而言至关重要。由于在ANSATZ设计过程中的电路尺寸和真实的设备噪声时,由于嘈杂的中等尺度量子(NISQ)机器上的噪声很大,因此是必要的。不幸的是,Ansatz设计的最新作品要么认为没有噪音影响,要么仅将真实设备视为没有特定噪声信息的黑匣子。在这项工作中,我们建议通过设计针对目标机上量子拓扑的特定ANSATZ打开黑匣子。具体而言,我们提出了一种自下而上的方法来生成特定于拓扑的ANSATZ。首先,我们生成具有理想特性的拓扑兼容亚电路,例如高表达性和纠缠能力。然后,将子电路组合在一起以形成初始的ansatz。我们进一步提出了缝合电路,以解决子路之间的稀疏连接问题,并在动态电路之间生长以提高准确性。用这种方法构建的ANSATZ具有很高的灵活性,因此我们可以探索一个比以前的最新方法更大的设计空间,在该方法中,所有ANSATZ候选者都是预定的大型ANSATZ的严格子集。我们将流行的VQA算法 - 量子神经网络(QNN)作为机器学习(ML)任务作为基准。 14个ML任务的实验表明,在相同的性能下,Topgen搜索的ANSATZ可以分别将电路深度和CNOT门的数量降低多达2 *和4 *。在三台实际量子机上进行的实验平均证明了基准的准确性提高了17%。

Variational Quantum Algorithms (VQA) are promising to demonstrate quantum advantages on near-term devices. Designing ansatz, a variational circuit with parameterized gates, is of paramount importance for VQA as it lays the foundation for parameter optimizations. Due to the large noise on Noisy-Intermediate Scale Quantum (NISQ) machines, considering circuit size and real device noise in the ansatz design process is necessary. Unfortunately, recent works on ansatz design either consider no noise impact or only treat the real device as a black box with no specific noise information. In this work, we propose to open the black box by designing specific ansatz tailored for the qubit topology on target machines. Specifically, we propose a bottom-up approach to generate topology-specific ansatz. Firstly, we generate topology-compatible sub-circuits with desirable properties such as high expressibility and entangling capability. Then, the sub-circuits are combined together to form an initial ansatz. We further propose circuits stitching to solve the sparse connectivity issue between sub-circuits, and dynamic circuit growing to improve the accuracy. The ansatz constructed with this method is highly flexible and thus we can explore a much larger design space than previous state-of-the-art method in which all ansatz candidates are strict subsets of a pre-defined large ansatz. We use a popular VQA algorithm - Quantum Neural Networks (QNN) for Machine Learning (ML) task as the benchmarks. Experiments on 14 ML tasks show that under the same performance, the TopGen-searched ansatz can reduce the circuit depth and the number of CNOT gates by up to 2 * and 4 * respectively. Experiments on three real quantum machines demonstrate on average 17% accuracy improvements over baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源