论文标题
在资源有限的量子计算机上模拟标量字段理论
Simulating scalar field theories on quantum computers with limited resources
论文作者
论文摘要
我们提出了一种用于在量子计算机上实现$ ϕ^4 $晶格标量场理论的量子算法。该场以离散的场幅度为基础表示。进化运算符实现所需的量子和基本门数与晶格大小成正比。该算法允许在正常和断裂对称阶段的大量输入参数中有效$ ϕ^4 $状态准备。使用变异和绝热进化方法的组合制备了这些状态。首先,包括$ ϕ^4 $自我交织在内的本地哈密顿量的基态是使用短差异电路制备的。接下来,通过绝热晶格位点之间的耦合来进化。定义局部哈密顿量的参数是可调的,构成了我们算法的输入。我们提出了一种优化这些参数的方法,以减少状态准备所需的绝热时间。为了制备破碎的对称状态,可以使用辅助外部场来解决跨过临界线和破碎对称地面状态的脱生的绝热进化问题,并通过在绝热过程中逐渐关闭。我们表明,绝热演化期间外场的时间依赖性对于解决破碎的对称地面状态变性很重要。通过使用线性降低的磁场强度呈指数下降,可以从二次降低到线性降低绝热时间对逆误差的依赖性。
We present a quantum algorithm for implementing $ϕ^4$ lattice scalar field theory on qubit computers. The field is represented in the discretized field amplitude basis. The number of qubits and elementary gates required by the implementation of the evolution operator is proportional to the lattice size. The algorithm allows efficient $ϕ^4$ state preparation for a large range of input parameters in both the normal and broken-symmetry phases. The states are prepared using a combination of variational and adiabatic evolution methods. First, the ground state of a local Hamiltonian, which includes the $ϕ^4$ self-interaction, is prepared using short variational circuits. Next, this state is evolved by switching on the coupling between the lattice sites adiabatically. The parameters defining the local Hamiltonian are adjustable and constitute the input of our algorithm. We present a method to optimize these parameters in order to reduce the adiabatic time required for state preparation. For preparing broken-symmetry states, the adiabatic evolution problems caused by crossing the phase transition critical line and by the degeneracy of the broken-symmetry ground state can be addressed using an auxiliary external field which gradually turns off during the adiabatic process. We show that the time dependence of the external field during the adiabatic evolution is important for addressing the broken-symmetry ground state degeneracy. The adiabatic time dependence on the inverse error tolerance can be reduced from quadratic to linear by using a field strength that decreases exponentially in time relative to one that decreases linearly.