论文标题

通过重力电流和大坝破裂流动的不稳定的障碍物

The unsteady overtopping of barriers by gravity currents and dam-break flows

论文作者

Skevington, Edward W. G., Hogg, Andrew J.

论文摘要

通过运动的浅水模型研究了重力驱动的水平电流,并在限制锁中释放出障碍物的碰撞以及捕获局部相互作用的复杂边界条件以及捕获局部相互作用的浅水模型。边界条件允许几种超越模式:超临界,亚临界和阻塞流。该模型在数学上和数值上进行分析,以揭示不稳定运动的各个方面,并计算屏障上游捕获的流体的比例。处理了几个问题。首先,分析了统一事件电流的理想化问题,以对不稳定的动力学制度进行分类。然后,解决了非常接近或遥远的障碍的极端机制,显示了相互作用通过超级模式的进展。接下来,对后期的流体量被捕获的量进行数值研究,证明了该体积纯粹由体积考虑确定的机制,而其他瞬时惯性效应显着。对于Boussinesq重力电流,即使屏障后面的密闭区域的体积等于流体量,$ 30 \%的流体$ cland evabape evapape the域,并且限制体积$ 3 $ $ 3 $ tome the Coletapped量必须忽略不计。对于一个大小的大坝破裂流量,当限制体积等于流体量时,逃脱的比例超过$ 60 \%$,并且屏障与初始释放一样高,即可可忽略不计。最后,我们将我们的预测与实验进行了比较,显示了一系列参数的良好一致性。

The collision of a gravitationally-driven horizontal current with a barrier following release from a confining lock is investigated using a shallow water model of the motion, together with a sophisticated boundary condition capturing the local interaction. The boundary condition permits several overtopping modes: supercritical, subcritical, and blocked flow. The model is analysed both mathematically and numerically to reveal aspects of the unsteady motion and to compute the proportion of the fluid trapped upstream of the barrier. Several problems are treated. Firstly, the idealised problem of a uniform incident current is analysed to classify the unsteady dynamical regimes. Then, the extreme regimes of a very close or distant barrier are tackled, showing the progression of the interaction through the overtopping modes. Next, the trapped volume of fluid at late times is investigated numerically, demonstrating regimes in which the volume is determined purely by volumetric considerations, and others where transient inertial effects are significant. For a Boussinesq gravity current, even when the volume of the confined region behind the barrier is equal to the fluid volume, $30\%$ of the fluid escapes the domain, and a confined volume $3$ times larger is required for the overtopped volume to be negligible. For a subaerial dam-break flow, the proportion that escapes is in excess of $60\%$ when the confined volume equals the fluid volume, and a barrier as tall as the initial release is required for negligible overtopping. Finally, we compare our predictions to experiments, showing a good agreement across a range of parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源