论文标题
量子工作分布的熵
Entropy of the quantum work distribution
论文作者
论文摘要
在量子系统上完成的工作统计数据可以通过两点测量方案来量化。我们展示了工作分布的香农熵如何根据最初的对角线熵和与相干性相对熵相关的纯粹量子术语接受一般的上限。我们证明,这种方法在各种环境中捕获了基础物理的强大签名。特别是,我们对Aubry-André-Harper模型进行了详细的研究,并表明工作分布的熵非常清楚地传达了定位过渡的物理学,这从统计矩中不明显。
The statistics of work done on a quantum system can be quantified by the two-point measurement scheme. We show how the Shannon entropy of the work distribution admits a general upper bound depending on the initial diagonal entropy, and a purely quantum term associated to the relative entropy of coherence. We demonstrate that this approach captures strong signatures of the underlying physics in a diverse range of settings. In particular, we carry out a detailed study of the Aubry-André-Harper model and show that the entropy of the work distribution conveys very clearly the physics of the localization transition, which is not apparent from the statistical moments.