论文标题
在最多$ 2 $固定点上行动的小组:Solodov定理的扩展
Groups acting on the line with at most $2$ fixed points: an extension of Solodov's theorem
论文作者
论文摘要
Solodov的经典结果指出,如果一个组在线上作用以使任何非平凡元素最多具有一个固定点,则该动作是Abelian或半偶联物与仿射作用。我们表明,如果我们放松假设,则需要任何非平凡元素具有最多2个固定点。
A classical result by Solodov states that if a group acts on the line such that any non-trivial element has at most one fixed point, then the action is either abelian or semi-conjugate to an affine action. We show that the same holds if we relax the assumption, requiring that any non-trivial element has at most 2 fixed points.