论文标题

混合和理由:通过数据混合进行域概括的语义拓扑推理

Mix and Reason: Reasoning over Semantic Topology with Data Mixing for Domain Generalization

论文作者

Chen, Chaoqi, Tang, Luyao, Liu, Feng, Zhao, Gangming, Huang, Yue, Yu, Yizhou

论文摘要

域的概括(DG)使从多个可见源域的学习机概括为一个看不见的目标。 DG方法的一般目标是学习独立于域标签的语义表示,这在理论上是合理的,但由于常见和域特异性因素的复杂混合而在经验上受到了挑战。尽管将表示形式分为两个不相交的部分已经在DG中获得了动力,但对数据的强有力推定限制了其在许多实际情况下的功效。在本文中,我们提出了混合和理性(\ mire),这是一种新的DG框架,通过执行语义拓扑的结构不变性来学习语义表示。 \ Mire \由两个关键组成部分,即类别感知数据混合(CDM)和自适应语义拓扑改进(ASTR)。 CDM是根据两个互补分类损失生成的激活图,将两个图像从不同域中混合,使分类器专注于语义对象的表示。 Astr引入了关系图来表示语义拓扑,该图是通过局部特征聚合与全局跨域关系推理之间的相互作用逐渐完善的。在多个DG基准上进行的实验验证了所提出的\ MIRE的有效性和鲁棒性。

Domain generalization (DG) enables generalizing a learning machine from multiple seen source domains to an unseen target one. The general objective of DG methods is to learn semantic representations that are independent of domain labels, which is theoretically sound but empirically challenged due to the complex mixture of common and domain-specific factors. Although disentangling the representations into two disjoint parts has been gaining momentum in DG, the strong presumption over the data limits its efficacy in many real-world scenarios. In this paper, we propose Mix and Reason (\mire), a new DG framework that learns semantic representations via enforcing the structural invariance of semantic topology. \mire\ consists of two key components, namely, Category-aware Data Mixing (CDM) and Adaptive Semantic Topology Refinement (ASTR). CDM mixes two images from different domains in virtue of activation maps generated by two complementary classification losses, making the classifier focus on the representations of semantic objects. ASTR introduces relation graphs to represent semantic topology, which is progressively refined via the interactions between local feature aggregation and global cross-domain relational reasoning. Experiments on multiple DG benchmarks validate the effectiveness and robustness of the proposed \mire.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源