论文标题

数字双胞胎启用技术的不确定性量化和灵敏度分析:野牛燃料绩效代码的应用

Uncertainty Quantification and Sensitivity analysis for Digital Twin Enabling Technology: Application for BISON Fuel Performance Code

论文作者

Kobayashi, Kazuma, Kumar, Dinesh, Bonney, Matthew, Chakraborty, Souvik, Paaren, Kyle, Alam, Syed

论文摘要

为了了解智能验证工具的潜力,美国核监管委员会(NRC)启动了一项以未来的研究项目,以评估机器学习(ML)和人工智能(AI)驱动的数字双胞胎(DTS)的监管可行性,以用于核电应用。高级事故耐受燃料(ATF)是美国能源部(DOE)的优先重点领域之一。 DT框架可以为合格的高级ATF提供改变游戏规则但实用的知情解决方案。考虑到DT的建模和仿真(M&S)方面的调节角度,不确定性量化和灵敏度分析对于DT框架在多标准和风险信息的决策方面的成功至关重要。本章介绍了基于ML的不确定性量化和灵敏度分析方法,同时向有限的基于有限元的核燃料性能代码野牛展示了实际应用。

To understand the potential of intelligent confirmatory tools, the U.S. Nuclear Regulatory Committee (NRC) initiated a future-focused research project to assess the regulatory viability of machine learning (ML) and artificial intelligence (AI)-driven Digital Twins (DTs) for nuclear power applications. Advanced accident tolerant fuel (ATF) is one of the priority focus areas of the U.S. Department of Energy (DOE). A DT framework can offer game-changing yet practical and informed solutions to the complex problem of qualifying advanced ATFs. Considering the regulatory standpoint of the modeling and simulation (M&S) aspect of DT, uncertainty quantification and sensitivity analysis are paramount to the DT framework's success in terms of multi-criteria and risk-informed decision-making. This chapter introduces the ML-based uncertainty quantification and sensitivity analysis methods while exhibiting actual applications to the finite element-based nuclear fuel performance code BISON.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源