论文标题

通过预测最大互补技术来提高基线视觉位置识别技术的性能

Boosting Performance of a Baseline Visual Place Recognition Technique by Predicting the Maximally Complementary Technique

论文作者

Malone, Connor, Hausler, Stephen, Fischer, Tobias, Milford, Michael

论文摘要

最新的有前途的视觉位置识别方法(VPR)问题是使用SRAL和多进程融合的方法融合多种互补VPR技术的位置识别估计。这些方法具有实质性的实际限制:它们需要在有选择地融合的所有潜在VPR方法之前进行蛮力运行。该限制的明显解决方案是提前预测方法的可行子集,但这是具有挑战性的,因为它需要图像本身中的预测信号,这表明了高性能方法。在这里,我们提出了一种替代方法,该方法从已知的单基VPR技术开始,并学会了预测与之融合的最互补的额外VPR技术,从而导致性能的最大改善。这里的关键创新是在训练和推理期间,使用此基线技术在查询图像和最高退回参考图像之间使用尺寸降低的差异矢量作为最互补的附加技术的预测信号。我们证明我们的方法可以训练一个网络,以选择跨越多种运输模式(火车,汽车,步行)的数据集的性能,互补的技术对,并推广到未看到的数据集,超过了多个基线策略,以根据相同的培训数据手动选择最佳技术。

One recent promising approach to the Visual Place Recognition (VPR) problem has been to fuse the place recognition estimates of multiple complementary VPR techniques using methods such as SRAL and multi-process fusion. These approaches come with a substantial practical limitation: they require all potential VPR methods to be brute-force run before they are selectively fused. The obvious solution to this limitation is to predict the viable subset of methods ahead of time, but this is challenging because it requires a predictive signal within the imagery itself that is indicative of high performance methods. Here we propose an alternative approach that instead starts with a known single base VPR technique, and learns to predict the most complementary additional VPR technique to fuse with it, that results in the largest improvement in performance. The key innovation here is to use a dimensionally reduced difference vector between the query image and the top-retrieved reference image using this baseline technique as the predictive signal of the most complementary additional technique, both during training and inference. We demonstrate that our approach can train a single network to select performant, complementary technique pairs across datasets which span multiple modes of transportation (train, car, walking) as well as to generalise to unseen datasets, outperforming multiple baseline strategies for manually selecting the best technique pairs based on the same training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源