论文标题
部分可观测时空混沌系统的无模型预测
Latent Temporal Flows for Multivariate Analysis of Wearables Data
论文作者
论文摘要
随着丰富的生理数据来源的使用,增加了来自可穿戴设备的传感器信号的使用激发了人们对开发健康监测系统的兴趣,以确定个人健康状况的变化。实际上,传感器信号的机器学习模型已实现了相关的各种相关应用,包括早期发现异常,生育能力跟踪和不良药物效应预测。但是,这些模型可能无法说明基础传感器信号的依赖性高维质。在本文中,我们介绍了潜在的时间流,这是一种针对此设置量身定制的多元时间序列建模的方法。我们假设一组序列是由未观察到的低维潜在载体的多元概率模型生成的。潜在的时间流同时通过深度自动编码器映射恢复了观察到的序列转换为较低维的潜在表示,并通过归一化的流量估算了暂时条件的概率模型。使用苹果心脏和运动研究(AH&MS)的数据,我们说明了这些挑战性信号的有希望的预测性能。此外,通过分析我们的模型学到的两个和三维表示形式,我们表明我们可以使用仅使用低级信号的有心脏响应适应性的主要指标和摘要来识别参与者的$ \ text {vo} _2 \ text {max} $。最后,我们表明,所提出的方法在多个现实世界中的数据集上始终优于多步预测基准(至少达到$ 10 \%$的性能提高)的最先进的方法,同时享受提高的计算效率。
Increased use of sensor signals from wearable devices as rich sources of physiological data has sparked growing interest in developing health monitoring systems to identify changes in an individual's health profile. Indeed, machine learning models for sensor signals have enabled a diverse range of healthcare related applications including early detection of abnormalities, fertility tracking, and adverse drug effect prediction. However, these models can fail to account for the dependent high-dimensional nature of the underlying sensor signals. In this paper, we introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting. We assume that a set of sequences is generated from a multivariate probabilistic model of an unobserved time-varying low-dimensional latent vector. Latent Temporal Flows simultaneously recovers a transformation of the observed sequences into lower-dimensional latent representations via deep autoencoder mappings, and estimates a temporally-conditioned probabilistic model via normalizing flows. Using data from the Apple Heart and Movement Study (AH&MS), we illustrate promising forecasting performance on these challenging signals. Additionally, by analyzing two and three dimensional representations learned by our model, we show that we can identify participants' $\text{VO}_2\text{max}$, a main indicator and summary of cardio-respiratory fitness, using only lower-level signals. Finally, we show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks (achieving at least a $10\%$ performance improvement) on several real-world datasets, while enjoying increased computational efficiency.