论文标题

在Web应用程序的静态分析中学习算法

Learning Algorithms in Static Analysis of Web Applications

论文作者

Nagaraj, Akash, Sinha, Bishesh, Sood, Mukund, Mathur, Yash, Gupta, Sanchika, Sitaram, Dinkar

论文摘要

Web应用程序是分布式应用程序,它们是在多台计算机上运行并通过网络或服务器进行通信的程序。 Web应用程序的这种非常分布的性质,再加上现代软件系统的规模和纯粹的复杂性,使手动安全审核复杂,同时还创造了潜在黑客的巨大攻击表面。这些因素使自动分析是必要的。静态应用程序安全测试(SAST)是一种方法,该方法旨在自动分析大型代码库的应用程序源代码,而无需对其进行编译,并设计了指示安全漏洞的设计条件。但是,问题在于一个事实,即使用最广泛的静态应用程序安全测试工具通常会产生不可靠的结果,这是因为对漏洞的假阳性分类的数量远远超过了真正积极脆弱性的分类。这是SAST测试扩散的最大障碍之一,这使用户可以审查数百个潜在警告(即使不是数千个),并将其归类为可行或虚假的。我们试图通过引入一种过滤SAST工具输出的技术来最大程度地减少误报问题。该项目的目的是通过分析由OWASP基准分类的真实和误报来将学习算法应用于输出,并消除或减少向SAST工具的用户呈现的误报数量。

Web applications are distributed applications, they are programs that run on more than one computer and communicate through a network or server. This very distributed nature of web applications, combined with the scale and sheer complexity of modern software systems complicate manual security auditing, while also creating a huge attack surface of potential hackers. These factors are making automated analysis a necessity. Static Application Security Testing (SAST) is a method devised to automatically analyze application source code of large code bases without compiling it, and design conditions that are indicative of security vulnerabilities. However, the problem lies in the fact that the most widely used Static Application Security Testing Tools often yield unreliable results, owing to the false positive classification of vulnerabilities grossly outnumbering the classification of true positive vulnerabilities. This is one of the biggest hindrances to the proliferation of SAST testing, which leaves the user to review hundreds, if not thousands, of potential warnings, and classify them as either actionable or spurious. We try to minimize the problem of false positives by introducing a technique to filter the output of SAST tools. The aim of the project is to apply learning algorithms to the output by analyzing the true and false positives classified by OWASP Benchmark, and eliminate, or reduce the number of false positives presented to the user of the SAST Tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源