论文标题
全柔软限制中的施温格·戴森(Schwinger-Dyson)截断:一个案例研究
Schwinger-Dyson truncations in the all-soft limit: a case study
论文作者
论文摘要
我们在背景字段方法中提出的纯SU(3)Yang-Mills理论的背景下研究了特殊的Schwinger-Dyson方程。具体而言,我们考虑了控制两个背景胶子与幽灵座对的相互作用的顶点的相应方程式。由于背景量规的不变性,该顶点满足了天真的Slavnov-Taylor身份,该身份并未被理论的幽灵部门变形。在全柔软的限制中,所有动量都消失了,该顶点的形式可以完全从相应的病房身份获得。随后通过广泛使用泰勒定理并利用了众多的关键关系(尤其是背景字段方法),在Schwinger-Dyson方程的级别上复制了这一特殊结果。该信息允许确定与两个不同的截断方案相关的误差,其中对使用晶格数据的幽灵敷料功能的潜在优势进行了定量评估。
We study a special Schwinger-Dyson equation in the context of a pure SU(3) Yang-Mills theory, formulated in the background field method. Specifically, we consider the corresponding equation for the vertex that governs the interaction of two background gluons with a ghost-antighost pair. By virtue of the background gauge invariance, this vertex satisfies a naive Slavnov-Taylor identity, which is not deformed by the ghost sector of the theory. In the all-soft limit, where all momenta vanish, the form of this vertex may be obtained exactly from the corresponding Ward identity. This special result is subsequently reproduced at the level of the Schwinger-Dyson equation, by making extensive use of Taylor's theorem and exploiting a plethora of key relations, particular to the background field method. This information permits the determination of the error associated with two distinct truncation schemes, where the potential advantage from employing lattice data for the ghost dressing function is quantitatively assessed.