论文标题

使用深度学习方法量化和分析岩石故障陡峭的岩石特征分布

Quantifying and analyzing rock trait distributions of rocky fault scarps using deep learning approach

论文作者

Chen, Zhiang, Scott, Chelsea, Keating, Devin, Clarke, Amanda, Das, Jnaneshwar, Arrowsmith, Ramon

论文摘要

我们采用深度学习模型来基于加利福尼亚州火山层的岩石断层斜向斜线的结构矫正术和数字高程模型来细分和识别岩石特性。通过后处理深度学习结果,我们构建了语义岩石图并分析岩石特质分布。所得的语义图包含近230,000块岩石,有效直径范围从2厘米至250厘米不等。岩石性状分布提供了关于岩石断层陡峭发展的新观点,并扩展了有关斜坡几何形状(包括坡度,身高和长度)的过去研究。热图表明岩石尺寸的空间分布和周围的地形平底鞋上的空间分布。中间的晶粒尺寸变化垂直于断层陡峭的痕迹,其在陡峭的脚壁上露出最大的岩石。分段断层斜斜的相关分析说明了岩石特征统计与断层斜坡地貌之间的关系。局部断层坡度高度与中位晶粒尺寸(R2为0.6),最大岩石的平均晶粒尺寸(R2为0.76)以及小岩石到大岩石的数量(R2为0.40)相关。局部断层陡坡高度与晶粒尺寸的标准偏差之间的正相关(R2为0.81)表明,较高断层斜坡上的岩石分类较差。故障坡度高度和岩石方向统计之间的相关分析支持粒子运输模型,在该模型中,局部较高的断层斜杠具有相对较大的岩石,其岩石的长轴与断层斜杠痕迹平行于斜线,因为岩石具有更大的距离,可以滚动和定向长轴。我们的工作证明了基于岩石性状分布的数据驱动的地貌方法,承诺对断层斜杠的形成有更深入的了解,以及颗粒测定法是过程指标的许多其他应用。

We apply a deep learning model to segment and identify rock characteristics based on a Structure-from-Motion orthomap and digital elevation model of a rocky fault scarp in the Volcanic Tablelands, eastern California. By post-processing the deep learning results, we build a semantic rock map and analyze rock trait distributions. The resulting semantic map contains nearly 230,000 rocks with effective diameters ranging from 2 cm to 250 cm. Rock trait distributions provide a new perspective on rocky fault scarp development and extend past research on scarp geometry including slope, height, and length. Heatmaps indicate rock size spatial distributions on the fault scarp and surrounding topographic flats. Median grain size changes perpendicular to the fault scarp trace with the largest rocks exposed on and downslope from the scarp footwall. Correlation analyses of the segmented fault scarp illustrate the relationship between rock trait statistics and fault scarp geomorphology. Local fault scarp height correlates with median grain size (R2 of 0.6), the mean grain size of the largest rocks (R2 of 0.76), and the ratio of the number of small to large rocks (R2 of 0.40). The positive correlation (R2 of 0.81) between local fault scarp height and standard deviation of grain size suggests that rocks on a higher fault scarp are less well sorted. The correlation analysis between fault scarp height and rock orientation statistics supports a particle transportation model in which locally higher fault scarps have relatively more rocks with long axes parallel to fault scarp trace because rocks have a larger distance to roll and orient the long axes. Our work demonstrates a data-driven approach to geomorphology based on rock trait distributions, promising a greater understanding of fault scarp formation, as well as many other applications for which granulometry is an indicator of process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源