论文标题
表面反示例对艾森布德·古特的猜想
Surface counterexamples to the Eisenbud-Goto conjecture
论文作者
论文摘要
众所周知,对于算术上的Cohen-Macaulay品种,投射曲线,光滑的表面,$ \ Mathbb {p}^5 $中的平滑三倍,以及Codioimension二的三倍品种。在J. McCullough和I. Peeva在2018年构建了反例之后,找到Eisenbud-Goto猜想的类别是一个有趣的问题。到目前为止,尚未找到表面反例,而知道更大或等于3的任何尺寸的反例。 在本文中,我们构建了$ \ mathbb {p}^4 $投影表面的Eisenbud-Goto猜想,并研究投影性不变性,共同体学特性和几何特性。反例是通过投影空间之间的二项式有理图构建的。
It is well known that the Eisenbud-Goto regularity conjecture is true for arithmetically Cohen-Macaulay varieties, projective curves, smooth surfaces, smooth threefolds in $\mathbb{P}^5$, and toric varieties of codimension two. After J. McCullough and I. Peeva constructed counterexamples in 2018, it has been an interesting question to find the categories such that the Eisenbud-Goto conjecture holds. So far, surface counterexamples have not been found while counterexamples of any dimension greater or equal to 3 are known. In this paper, we construct counterexamples to the Eisenbud-Goto conjecture for projective surfaces in $\mathbb{P}^4$ and investigate projective invariants, cohomological properties, and geometric properties. The counterexamples are constructed via binomial rational maps between projective spaces.