论文标题
RS CVN类型的Swift和XMM-Newton观察到Eclips tariper二进制SZ PSC:Superflare和Coronal属性
Swift and XMM-Newton observations of an RS CVn type eclipsing binary SZ Psc: Superflare and coronal properties
论文作者
论文摘要
我们对使用Swift天文台的观测值在RS CVN型柔软的二元系统SZ PSC上观察到的X射线耀斑进行了深入研究($> $ 1.3天)。在0.35 $ - $ 10 kev Energy Band中,峰值光度估计为4.2 $ \ times $ 10 $^{33} $ erg s $^{ - 1} $。使用Swift天文台,观察到SZ PSC的静止电晕,$ \ sim $ 5.67 d,以及使用XMM-Newton卫星的耀斑后$ \ sim $ \ sim $ 1.4年。发现静止的电晕由三个温度等离子体组成:4、13和48 mk。 SZ PSC静止的电晕的高分辨率X射线光谱分析表明,高第一电离势(FIP)元件比低FIP元素更丰富。耀斑的时间分辨X射线光谱显示出耀斑温度,排放度量和丰度的显着变化。耀斑期间的温度,排放度量和丰度的峰值估计为199 $ \ pm $ 11 mk,2.13 $ \ pm $ 0.05 $ \ times 10^{56} $ cm $^{ - 3} $,0.66 $ \ pm $ 0.09 z $ 0.09 z $ _ {\ odot} $,分别使用流体动力循环建模,我们将耀斑的循环长度得出为6.3 $ \ pm $ 0.5 $ \ times 10^{11} $ cm,而耀斑峰值的回路压力和密度则为3.5 $ \ pm $ \ pm $ 0.7 $ 0.7 $ \ times 10^{3} $ dyne cm $ \ pp pm $ $ \ pp $ \ pp $ \ pp $ \ pp $^$^$^$^$^$^$^$^$^2 $ 2} 10^{10} $ cm $^{ - 3} $。产生耀斑的总磁场估计为490美元$ \ pm $ 60 g。冠状高度的大磁场应该是由于存在亚巨头的扩展对流区和高轨道速度。
We present an in-depth study of a large and long duration ($>$1.3 days) X-ray flare observed on an RS CVn type eclipsing binary system SZ Psc using observations from Swift observatory. In the 0.35$-$10 keV energy band, the peak luminosity is estimated to be 4.2$\times$10$^{33}$ erg s$^{-1}$. The quiescent corona of SZ Psc was observed $\sim$5.67 d after the flare using Swift observatory, and also $\sim$1.4 yr after the flare using the XMM-Newton satellite. The quiescent corona is found to consist of three temperature plasma: 4, 13, and 48 MK. High-resolution X-ray spectral analysis of the quiescent corona of SZ Psc suggests that the high first ionization potential (FIP) elements are more abundant than the low-FIP elements. The time-resolved X-ray spectroscopy of the flare shows a significant variation in the flare temperature, emission measure, and abundance. The peak values of temperature, emission measure, and abundances during the flare are estimated to be 199$\pm$11 MK, 2.13$\pm$0.05 $\times 10^{56}$ cm$^{-3}$, 0.66$\pm$0.09 Z$_{\odot}$, respectively. Using the hydrodynamic loop modeling, we derive the loop length of the flare as 6.3$\pm$0.5 $\times 10^{11}$ cm, whereas the loop pressure and density at the flare peak are derived to be 3.5$\pm$0.7 $\times 10^{3}$ dyne cm$^{-2}$ and 8$\pm$2 $\times 10^{10}$ cm$^{-3}$, respectively. The total magnetic field to produce the flare is estimated to be 490$\pm$60 G. The large magnetic field at the coronal height is supposed to be due to the presence of an extended convection zone of the sub-giant and the high orbital velocity.