论文标题
与共识表示的深度聚类
Deep Clustering With Consensus Representations
论文作者
论文摘要
深层聚类的领域结合了深度学习和聚类,以学习提高所经过的群集方法的表现和性能。大多数现有的深群集方法都是为单个聚类方法设计的,例如K-均值,光谱聚类或高斯混合模型,但众所周知,在所有情况下,没有聚类算法都可以效果最好。共识聚类试图通过在聚类合奏的成员之间建立共识来减轻聚类算法的个体弱点。当前,没有深层聚类方法可以在集合中包含多个异质聚类算法,以一起更新表示表示和聚类。为了缩小这一差距,我们介绍了共识代表的想法,以最大化合奏成员之间的协议。此外,我们提出了DECC(具有共识表示的深层嵌入聚类),这是一种深入共识聚类方法,通过增强嵌入式空间以使所有合奏成员都同意共同聚类结果的程度来学习共识表示。我们的贡献如下:(1)我们介绍了学习共识表示异质聚类的想法,这是一种新的概念,是对共识聚类进行的。 (2)我们提出DECC,这是第一种共同改善多个异质聚类算法的表示和聚类结果的深聚类方法。 (3)我们在实验中表明,通过DECC学习共识表示,从深度聚类和共识聚类中的几个相关基准都表现出色。我们的代码可以在https://gitlab.cs.univie.ac.at/lukas/deccs找到
The field of deep clustering combines deep learning and clustering to learn representations that improve both the learned representation and the performance of the considered clustering method. Most existing deep clustering methods are designed for a single clustering method, e.g., k-means, spectral clustering, or Gaussian mixture models, but it is well known that no clustering algorithm works best in all circumstances. Consensus clustering tries to alleviate the individual weaknesses of clustering algorithms by building a consensus between members of a clustering ensemble. Currently, there is no deep clustering method that can include multiple heterogeneous clustering algorithms in an ensemble to update representations and clusterings together. To close this gap, we introduce the idea of a consensus representation that maximizes the agreement between ensemble members. Further, we propose DECCS (Deep Embedded Clustering with Consensus representationS), a deep consensus clustering method that learns a consensus representation by enhancing the embedded space to such a degree that all ensemble members agree on a common clustering result. Our contributions are the following: (1) We introduce the idea of learning consensus representations for heterogeneous clusterings, a novel notion to approach consensus clustering. (2) We propose DECCS, the first deep clustering method that jointly improves the representation and clustering results of multiple heterogeneous clustering algorithms. (3) We show in experiments that learning a consensus representation with DECCS is outperforming several relevant baselines from deep clustering and consensus clustering. Our code can be found at https://gitlab.cs.univie.ac.at/lukas/deccs