论文标题

RE3:用递归重复和修订产生更长的故事

Re3: Generating Longer Stories With Recursive Reprompting and Revision

论文作者

Yang, Kevin, Tian, Yuandong, Peng, Nanyun, Klein, Dan

论文摘要

我们认为自动产生超过两千个单词的故事的问题。与先前关于较短故事的工作相比,远程情节连贯性和相关性在这里是更重要的挑战。我们建议通过(a)提示通用语言模型来构建结构性的总体计划,以及(b)通过反复从计划和当前故事状态提示中注入上下文信息,以构建故事段落来解决故事段落,以解决这些挑战,以解决这些挑战。然后,我们通过(c)重新掌握图形连贯性和前提相关性的不同连续性,最后(d)编辑最佳的延续,以实现事实一致性。与直接从同一基本模型产生的相似长度的故事相比,人类评估者基本上判断了RE3的故事是具有连贯的总体图(绝对增长14%),并且与给定的初始前提(20%)有关。

We consider the problem of automatically generating longer stories of over two thousand words. Compared to prior work on shorter stories, long-range plot coherence and relevance are more central challenges here. We propose the Recursive Reprompting and Revision framework (Re3) to address these challenges by (a) prompting a general-purpose language model to construct a structured overarching plan, and (b) generating story passages by repeatedly injecting contextual information from both the plan and current story state into a language model prompt. We then revise by (c) reranking different continuations for plot coherence and premise relevance, and finally (d) editing the best continuation for factual consistency. Compared to similar-length stories generated directly from the same base model, human evaluators judged substantially more of Re3's stories as having a coherent overarching plot (by 14% absolute increase), and relevant to the given initial premise (by 20%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源