论文标题

二维湍流的非单身共形野外理论方法

A Non-Unitary Conformal Field Theory Approach to Two-Dimensional Turbulence

论文作者

Nian, Jun, Yu, Xiaoquan, Ye, Jinwu

论文摘要

流体湍流是一种遥远的平衡现象,仍然是物理学中最具挑战性的问题之一。二维,完全发达的湍流可能具有最大的对称性,即形成对称性。我们专注于二维有界湍流的稳态解决方案,并提出了A $ c = 0 $ c = 0 $边界对数的保形场理论,用于反向能量级联,以及经典限制$ c \ rightArrow-\ rightarrow-\ rightarrow-infty cascade $ c \ rightarrow $中的另一种散装的保形场理论。我们表明,这些理论引起了Kraichnan-Batchelor缩放$ k^{ - 3} $,以及分别用于繁殖的kolmogorov-kraichnan缩放$ k^{ - 5/3} $,分别为entropherphy和能量级联级别,并带有预期的级联级联方向,磁通量,磁效应。我们还为未来的数值模拟和测试实验做出了一些新的预测。

Fluid turbulence is a far-from-equilibrium phenomenon and remains one of the most challenging problems in physics. Two-dimensional, fully developed turbulence may possess the largest possible symmetry, the conformal symmetry. We focus on the steady-state solution of two-dimensional bounded turbulent flow and propose a $c=0$ boundary logarithmic conformal field theory for the inverse energy cascade and another bulk conformal field theory in the classical limit $c\rightarrow -\infty$ for the direct enstrophy cascade. We show that these theories give rise to the Kraichnan-Batchelor scaling $k^{-3}$ and the Kolmogorov-Kraichnan scaling $k^{-5/3}$ for the enstrophy and the energy cascades, respectively, with the expected cascade directions, fluxes, and fractal dimensions. We also made some new predictions for future numerical simulations and experiments to test.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源