论文标题
通过大气湍流对成像进行实时密集的场相模拟模拟
Real-Time Dense Field Phase-to-Space Simulation of Imaging through Atmospheric Turbulence
论文作者
论文摘要
大气湍流的数值模拟是开发用于解决远程成像中反向问题的计算技术中最大的瓶颈之一。经典的拆分方法基于数值波传播,该传播将传播路径拆分为许多段,并通过菲涅尔积分单独地传播每个段中的每个像素。对于较大的图像,这种重复的评估变得越来越耗时。结果,通常仅在稀疏的点网格上进行拆分模拟,然后在其他像素上进行插值。即便如此,该计算对于实时应用程序还是昂贵的。在本文中,我们提出了一种新的仿真方法,该方法可以通过点的\ emph {lote}网格进行\ emph {实时}处理。在最近开发的多孔道模型和相距变换的基础上,我们克服了从Zernike相关张量绘制随机样品的内存瓶颈。我们表明,Zernike模式的互相关对随机样品的统计数据有无关紧要的贡献。通过近似Zernike张量中的这些互相关块,我们恢复了张量的均匀性,然后启用基于傅立叶的随机采样。在$ 512 \ times512 $图像上,新模拟器在密集的字段上每帧达到0.025秒。在$ 3840 \ times 2160 $图像上,使用拆分方法将花费13个小时才能模拟,新模拟器可以以每帧约60秒的速度运行。
Numerical simulation of atmospheric turbulence is one of the biggest bottlenecks in developing computational techniques for solving the inverse problem in long-range imaging. The classical split-step method is based upon numerical wave propagation which splits the propagation path into many segments and propagates every pixel in each segment individually via the Fresnel integral. This repeated evaluation becomes increasingly time-consuming for larger images. As a result, the split-step simulation is often done only on a sparse grid of points followed by an interpolation to the other pixels. Even so, the computation is expensive for real-time applications. In this paper, we present a new simulation method that enables \emph{real-time} processing over a \emph{dense} grid of points. Building upon the recently developed multi-aperture model and the phase-to-space transform, we overcome the memory bottleneck in drawing random samples from the Zernike correlation tensor. We show that the cross-correlation of the Zernike modes has an insignificant contribution to the statistics of the random samples. By approximating these cross-correlation blocks in the Zernike tensor, we restore the homogeneity of the tensor which then enables Fourier-based random sampling. On a $512\times512$ image, the new simulator achieves 0.025 seconds per frame over a dense field. On a $3840 \times 2160$ image which would have taken 13 hours to simulate using the split-step method, the new simulator can run at approximately 60 seconds per frame.