论文标题

部分可观测时空混沌系统的无模型预测

How to Sift Out a Clean Data Subset in the Presence of Data Poisoning?

论文作者

Zeng, Yi, Pan, Minzhou, Jahagirdar, Himanshu, Jin, Ming, Lyu, Lingjuan, Jia, Ruoxi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Given the volume of data needed to train modern machine learning models, external suppliers are increasingly used. However, incorporating external data poses data poisoning risks, wherein attackers manipulate their data to degrade model utility or integrity. Most poisoning defenses presume access to a set of clean data (or base set). While this assumption has been taken for granted, given the fast-growing research on stealthy poisoning attacks, a question arises: can defenders really identify a clean subset within a contaminated dataset to support defenses? This paper starts by examining the impact of poisoned samples on defenses when they are mistakenly mixed into the base set. We analyze five defenses and find that their performance deteriorates dramatically with less than 1% poisoned points in the base set. These findings suggest that sifting out a base set with high precision is key to these defenses' performance. Motivated by these observations, we study how precise existing automated tools and human inspection are at identifying clean data in the presence of data poisoning. Unfortunately, neither effort achieves the precision needed. Worse yet, many of the outcomes are worse than random selection. In addition to uncovering the challenge, we propose a practical countermeasure, Meta-Sift. Our method is based on the insight that existing attacks' poisoned samples shifts from clean data distributions. Hence, training on the clean portion of a dataset and testing on the corrupted portion will result in high prediction loss. Leveraging the insight, we formulate a bilevel optimization to identify clean data and further introduce a suite of techniques to improve efficiency and precision. Our evaluation shows that Meta-Sift can sift a clean base set with 100% precision under a wide range of poisoning attacks. The selected base set is large enough to give rise to successful defenses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源