论文标题

自我发项指导的多尺度梯度GAN,用于多元化的X射线图像合成

A Self-attention Guided Multi-scale Gradient GAN for Diversified X-ray Image Synthesis

论文作者

Saad, Muhammad Muneeb, Rehmani, Mubashir Husain, O'Reilly, Ruairi

论文摘要

不平衡的图像数据集通常在生物医学图像分析的领域中可用。生物医学图像包含多种特征,这些特征在预测靶向疾病方面具有重要意义。生成对抗网络(GAN)用于通过生成合成图像来解决数据限制问题。训练挑战,例如模式崩溃,非缔合和不稳定性在合成多元化和高质量图像中的gan效果降低。在这项工作中,MSG-SAGAN提出了一个注意引导的多尺度梯度GAN体系结构,以模拟生物医学图像特征的远程依赖性之间的关系,并使用在生成器和歧视器模型的多个分辨率下的多尺度梯度在多个分辨率上使用多尺度梯度的训练性能提高训练性能。目的是使用具有多尺度梯度学习的注意机制来减少模式崩溃的影响,并稳定GAN的训练,以进行多样化的X射线图像合成。多尺度的结构相似性指数指数度量(MS-SSIM)和特里切特的成立距离(FID)用于识别模式崩溃的发生并评估产生的合成图像的多样性。将所提出的结构与多尺度梯度GAN(MSG-GAN)进行比较,以评估生成的合成图像的多样性。结果表明,MSG-Sagan在合成多元化图像中的表现优于MSG-GAN,这是MS-SSIM和FID得分所证明的。

Imbalanced image datasets are commonly available in the domain of biomedical image analysis. Biomedical images contain diversified features that are significant in predicting targeted diseases. Generative Adversarial Networks (GANs) are utilized to address the data limitation problem via the generation of synthetic images. Training challenges such as mode collapse, non-convergence, and instability degrade a GAN's performance in synthesizing diversified and high-quality images. In this work, MSG-SAGAN, an attention-guided multi-scale gradient GAN architecture is proposed to model the relationship between long-range dependencies of biomedical image features and improves the training performance using a flow of multi-scale gradients at multiple resolutions in the layers of generator and discriminator models. The intent is to reduce the impact of mode collapse and stabilize the training of GAN using an attention mechanism with multi-scale gradient learning for diversified X-ray image synthesis. Multi-scale Structural Similarity Index Measure (MS-SSIM) and Frechet Inception Distance (FID) are used to identify the occurrence of mode collapse and evaluate the diversity of synthetic images generated. The proposed architecture is compared with the multi-scale gradient GAN (MSG-GAN) to assess the diversity of generated synthetic images. Results indicate that the MSG-SAGAN outperforms MSG-GAN in synthesizing diversified images as evidenced by the MS-SSIM and FID scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源