论文标题
多模式多元素多铅心电图心律失常使用自我监督学习
Multimodality Multi-Lead ECG Arrhythmia Classification using Self-Supervised Learning
论文作者
论文摘要
心电图(ECG)信号是主要用于诊断和预测心血节律异常的心血管疾病(CVD)的最有效信息来源之一。显然,单个模态ECG(即时间序列)无法传达其完整的特征,因此需要以时间序列数据和频谱图的形式利用时间和时频方式。利用未标记数据的尖端自我监督学习(SSL)技术,我们提出了基于SSL的多模式ECG分类。我们提出的网络遵循SSL学习范式,由两个模块组成,分别对应于前流任务和下游任务。在SSL-Pre-stream任务中,我们利用没有标记数据的自我知识蒸馏(KD)技术,在各种转换以及时间域和频域中。在对标记数据进行培训的下游任务中,我们提出了一种栅极融合机制来融合多模式的信息。为了评估我们的方法的有效性,已经对12 Lead Physionet 2020数据集进行了十倍的交叉验证。
Electrocardiogram (ECG) signal is one of the most effective sources of information mainly employed for the diagnosis and prediction of cardiovascular diseases (CVDs) connected with the abnormalities in heart rhythm. Clearly, single modality ECG (i.e. time series) cannot convey its complete characteristics, thus, exploiting both time and time-frequency modalities in the form of time-series data and spectrogram is needed. Leveraging the cutting-edge self-supervised learning (SSL) technique on unlabeled data, we propose SSL-based multimodality ECG classification. Our proposed network follows SSL learning paradigm and consists of two modules corresponding to pre-stream task, and down-stream task, respectively. In the SSL-pre-stream task, we utilize self-knowledge distillation (KD) techniques with no labeled data, on various transformations and in both time and frequency domains. In the down-stream task, which is trained on labeled data, we propose a gate fusion mechanism to fuse information from multimodality.To evaluate the effectiveness of our approach, ten-fold cross validation on the 12-lead PhysioNet 2020 dataset has been conducted.