论文标题

对Schrödinger-Newton方程的相对论影响

Relativistic effects on the Schrödinger-Newton equation

论文作者

Brizuela, David, Duran-Cabacés, Albert

论文摘要

Schrödinger-Newton模型描述了自我填充的量子颗粒,通常被引用以解释波函数的重力崩溃和宏观对象的定位。但是,该模型是完全非派别主义的。因此,为了研究相对论效应是否可能破坏该系统的性质,我们通过考虑到纽约后第一个后秩序的某些相对论校正来得出Schrödinger-Newton方程的修改。该模型的构建始于考虑在弯曲背景上传播的相对论粒子的哈密顿量。为简单起见,假定背景度量是球形对称性的,然后将其扩展到第一个牛顿后秩序。执行系统的规范量化并按照通常的解释后,波函数模块的平方定义了质量分布,这又是重力电位的泊松方程的来源。就像在非宗派的情况下一样,这种构建将泊松和施罗丁方程式融合在一起,并导致复杂的非线性系统。因此,然后对初始高斯波数据包的动力学进行数值分析。我们观察到,波功能的自然分散比在非依次主义情况下要慢。此外,对于达到最终局部固定状态的情况,波函数的峰值恰好位于半径较小。因此,相对论校正有效地有助于增加粒子的自我实质,并增强该模型的有效性,以解释波功能的重力定位。

The Schrödinger-Newton model describes self-gravitating quantum particles, and it is often cited to explain the gravitational collapse of the wave function and the localization of macroscopic objects. However, this model is completely nonrelativistic. Thus, in order to study whether the relativistic effects may spoil the properties of this system, we derive a modification of the Schrödinger-Newton equation by considering certain relativistic corrections up to the first post-Newtonian order. The construction of the model begins by considering the Hamiltonian of a relativistic particle propagating on a curved background. For simplicity, the background metric is assumed to be spherically symmetric and it is then expanded up to the first post-Newtonian order. After performing the canonical quantization of the system, and following the usual interpretation, the square of the module of the wave function defines a mass distribution, which in turn is the source of the Poisson equation for the gravitational potential. As in the nonrelativistic case, this construction couples the Poisson and the Schrödinger equations and leads to a complicated nonlinear system. Hence, the dynamics of an initial Gaussian wave packet is then numerically analyzed. We observe that the natural dispersion of the wave function is slower than in the nonrelativistic case. Furthermore, for those cases that reach a final localized stationary state, the peak of the wave function happens to be located at a smaller radius. Therefore, the relativistic corrections effectively contribute to increase the self-gravitation of the particle and strengthen the validity of this model as an explanation for the gravitational localization of the wave function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源