论文标题
预测血细胞穿过的狭窄毛细血管中可变形药物的血管粘附
Predicting the vascular adhesion of deformable drug carriers in narrow capillaries traversed by blood cell
论文作者
论文摘要
在血管靶向疗法中,血源性载体应从腔侧延伸到患病组织的持续药物释放。在这种情况下,要求这样的载体在足够的时间内牢固地粘附在血管壁上,同时抵抗由血流和循环细胞引起的力扰动。在这里,提出了一个混合计算模型,结合了晶格玻尔兹曼(LBM)和浸入边界方法(IBM),以预测狭窄的毛细血管中颗粒粘附的强度(7.5 $ \ mathrm {m Mathrm {m})$被血细胞横穿。沿毛细管流动时,球状和双孔可变形的细胞($7μ\ Mathrm {m} $)遇到$2μ\ Mathrm {M} $盘状颗粒,粘附在容器壁上。粒子的宽高比从$ 0.25 $到$ 1.0 $,并且机械刚度从刚性$(\ m athrm {ca} = 0)$到软$ \ left(\ mathrm {ca} = 10^{ - 3} \ right)$。通过三个独立参数进行定量预测的细胞粒子相互作用:拉伸$ΔP$的细胞膜;细胞到粒子距离$ r $,以及参与的配体债券的数量$ n _ {\ mathrm {l}} $。
In vascular targeted therapies, blood-borne carriers should realize sustained drug release from the luminal side towards the diseased tissue. In this context, such carriers are required to firmly adhere to the vessel walls for a sufficient period of time while resisting force perturbations induced by the blood flow and circulating cells. Here, a hybrid computational model, combining a Lattice Boltzmann (LBM) and Immersed Boundary Methods (IBM), is proposed for predicting the strength of adhesion of particles in narrow capillaries (7.5 $μ\mathrm{m})$ traversed by blood cells. While flowing down the capillary, globular and biconcave deformable cells ( $7 μ\mathrm{m}$ ) encounter $2 μ\mathrm{m}$ discoidal particles, adhering to the vessel walls. Particles present aspect ratios ranging from $0.25$ to $1.0$ and a mechanical stiffness varying from rigid $(\mathrm{Ca}=0)$ to soft $\left(\mathrm{Ca}=10^{-3}\right)$. Cell-particle interactions are quantitatively predicted over time via three independent parameters: the cell membrane stretching $δp$; the cell-to-particle distance $r$, and the number of engaged ligand-receptor bonds $N_{\mathrm{L}}$.