论文标题

Junkedrummer:有条件的节奏感知音频域鼓伴奏通过变压器VQ-VAE生成

JukeDrummer: Conditional Beat-aware Audio-domain Drum Accompaniment Generation via Transformer VQ-VAE

论文作者

Wu, Yueh-Kao, Chiu, Ching-Yu, Yang, Yi-Hsuan

论文摘要

本文提出了一个模型,该模型在音频域中生成鼓轨道,以播放到无用户提供的无鼓记录。具体而言,使用Drumless轨道的配对数据和相应的人造鼓轨道,我们训练一个变压器模型,即兴创造了一个看不见的无鼓记录的鼓部分。我们结合了两种编码输入音频的方法。首先,我们训练由矢量定量的变分自动编码器(VQ-VAE)代表带有离散代码的输入音频,然后很容易在变压器中使用。其次,使用音频域beat跟踪模型,我们计算输入音频的节拍相关功能,并将它们用作变压器中的嵌入。我们使用单独的VQ-VAE并没有直接生成鼓轨道作为波形,将鼓轨道的旋光图编码为另一组离散代码,并训练变压器以预测与鼓相关的离散代码的顺序。然后将输出代码转换为使用解码器的MEL光谱图,然后使用Vocoder转换为波形。我们报告了所提出模型的变体的客观和主观评估,表明带有节拍信息的模型会产生与输入音频一致的节奏和风格一致的鼓伴奏。

This paper proposes a model that generates a drum track in the audio domain to play along to a user-provided drum-free recording. Specifically, using paired data of drumless tracks and the corresponding human-made drum tracks, we train a Transformer model to improvise the drum part of an unseen drumless recording. We combine two approaches to encode the input audio. First, we train a vector-quantized variational autoencoder (VQ-VAE) to represent the input audio with discrete codes, which can then be readily used in a Transformer. Second, using an audio-domain beat tracking model, we compute beat-related features of the input audio and use them as embeddings in the Transformer. Instead of generating the drum track directly as waveforms, we use a separate VQ-VAE to encode the mel-spectrogram of a drum track into another set of discrete codes, and train the Transformer to predict the sequence of drum-related discrete codes. The output codes are then converted to a mel-spectrogram with a decoder, and then to the waveform with a vocoder. We report both objective and subjective evaluations of variants of the proposed model, demonstrating that the model with beat information generates drum accompaniment that is rhythmically and stylistically consistent with the input audio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源