论文标题
符号REES代数和设定理论完整交集
Symbolic Rees algebras and set-theoretic complete intersections
论文作者
论文摘要
在本文中,我们扩展了Cowsik在固定理论完整交叉点上的结果,结果是Huneke,Morales和goto和Nishida,围绕Noetherian象征性的Rees代数。作为应用,我们表明以下理想的符号REES代数为noetherian,并且理想是理论完整的交叉点:(a)完整图的边缘理想,(b)fermat理想和(c)(c)(c)(c)某种超平面布置的雅各布理想。
In this paper we extend a result of Cowsik on set-theoretic complete intersection and a result Huneke, Morales and Goto and Nishida about Noetherian symbolic Rees algebras of ideals. As applications, we show that the symbolic Rees algebras of the following ideals are Noetherian and the ideals are set-theoretic complete intersections: (a) the edge ideal of a complete graph, (b) the Fermat ideal and (c) the Jacobian ideal of a certain hyperplane arrangement.