论文标题
栅格日志的数字化:一种深度学习方法
Digitization of Raster Logs: A Deep Learning Approach
论文作者
论文摘要
光栅井图像是多年来生成的井数据数据的数字表示。栅格数字井日志表示黑色(零)和称为像素的矩形阵列中日志图像的位图。专家手动研究栅格日志或仍需要大量手动输入的软件应用程序。除了损失数千个人小时之外,这个过程是错误且乏味的。为了数字化这些栅格日志,必须购买一款昂贵的数字化机构,该数字不仅是手动和耗时的,而且还必须是隐藏的技术债务,因为企业将在其他服务和咨询费用中损失更多的钱。我们提出了一个名为Veernet的深度神经网络体系结构,以从背景网格中分割栅格图像,并对井gog曲线进行分类和数字化。栅格日志的分辨率比图像分割管道传统上消耗的图像要大得多。由于输入的信噪比较低,因此我们需要快速降采样以减轻不必要的计算。因此,我们采用了一个经过修改的未进行的架构,该体系结构可以平衡保留关键信号和降低结果维度。我们使用注意增强的阅读过程 - 写结构。该体系结构有效地对曲线进行了分类和数字化,总体F1分数为35%,IOU为30%。与VEERNET的伽马射线伽马射线和伽马射线的衍生值相比,高皮尔森系数得分为0.62。
Raster well-log images are digital representations of well-logs data generated over the years. Raster digital well logs represent bitmaps of the log image in a rectangular array of black (zeros) and white dots (ones) called pixels. Experts study the raster logs manually or with software applications that still require a tremendous amount of manual input. Besides the loss of thousands of person-hours, this process is erroneous and tedious. To digitize these raster logs, one must buy a costly digitizer that is not only manual and time-consuming but also a hidden technical debt since enterprises stand to lose more money in additional servicing and consulting charges. We propose a deep neural network architecture called VeerNet to semantically segment the raster images from the background grid and classify and digitize the well-log curves. Raster logs have a substantially greater resolution than images traditionally consumed by image segmentation pipelines. Since the input has a low signal-to-resolution ratio, we require rapid downsampling to alleviate unnecessary computation. We thus employ a modified UNet-inspired architecture that balances retaining key signals and reducing result dimensionality. We use attention augmented read-process-write architecture. This architecture efficiently classifies and digitizes the curves with an overall F1 score of 35% and IoU of 30%. When compared to the actual las values for Gamma-ray and derived value of Gamma-ray from VeerNet, a high Pearson coefficient score of 0.62 was achieved.