论文标题

通过纳米卫星蜂群的自动小行星表征

Autonomous Asteroid Characterization Through Nanosatellite Swarming

论文作者

Dennison, Kaitlin, Stacey, Nathan, D'Amico, Simone

论文摘要

本文首先定义了一类称为同时导航和表征(SNAC)的估计问题,该问题是同时定位和映射的超集(SLAM)。然后为自主纳米卫星蜂群(ANS)概念开发了一个SNAC框架,以自主浏览和表征小行星,包括小行星重力场,旋转运动和3D形状。 ANS SNAC框架由三个模块组成:1)使用立体电视组织进行多代理的光学里程碑跟踪和3D点重建,2)通过计算高效且强大的无用的Kalman滤波器进行状态估算,以及3)重建小型球体球形球形谐波形状模型,通过对先验知识的形态构成形状的物体,以实现celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial celestial proptique。尽管对小行星有很大的兴趣,但目前的小行星会合任务概念仍存在一些局限性。首先,完成的任务在很大程度上依赖于人类的监督和基于地球的资源。其次,提出的提高自主权的解决方案使人们过分简化了有关州知识和信息处理的假设。第三,小行星任务概念通常选择用于环境测量的高尺寸,重量,功率和成本(SWAP-C)航空电子学。最后,这样的任务经常利用单个航天器,忽略了分布式空间系统的好处。相比之下,ANS由配备低交换-C航空化学的多种自主纳米卫星组成。通过对三个轨道轨道小行星433 ERO的飞船模拟来验证ANS SNAC框架。模拟结果表明,所提出的体系结构以安全的方式提供了自主和准确的SNAC,而无需先验形状模型,并且仅使用低交换-C航空电子产品。

This paper first defines a class of estimation problem called simultaneous navigation and characterization (SNAC), which is a superset of simultaneous localization and mapping (SLAM). A SNAC framework is then developed for the Autonomous Nanosatellite Swarming (ANS) mission concept to autonomously navigate about and characterize an asteroid including the asteroid gravity field, rotational motion, and 3D shape. The ANS SNAC framework consists of three modules: 1) multi-agent optical landmark tracking and 3D point reconstruction using stereovision, 2) state estimation through a computationally efficient and robust unscented Kalman filter, and 3) reconstruction of an asteroid spherical harmonic shape model by leveraging a priori knowledge of the shape properties of celestial bodies. Despite significant interest in asteroids, there are several limitations to current asteroid rendezvous mission concepts. First, completed missions heavily rely on human oversight and Earth-based resources. Second, proposed solutions to increase autonomy make oversimplifying assumptions about state knowledge and information processing. Third, asteroid mission concepts often opt for high size, weight, power, and cost (SWaP-C) avionics for environmental measurements. Finally, such missions often utilize a single spacecraft, neglecting the benefits of distributed space systems. In contrast, ANS is composed of multiple autonomous nanosatellites equipped with low SWaP-C avionics. The ANS SNAC framework is validated through a numerical simulation of three spacecraft orbiting asteroid 433 Eros. The simulation results demonstrate that the proposed architecture provides autonomous and accurate SNAC in a safe manner without an a priori shape model and using only low SWaP-C avionics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源