论文标题

对束缚含义的逻辑的语义分析

Semantical Analysis of the Logic of Bunched Implications

论文作者

Gheorghiu, Alexander V., Pym, David J.

论文摘要

我们提供了一种新颖的方法,以证明逻辑(此后:对象逻辑)的稳健性和完整性,该逻辑绕过了直接与有效性合作的真相。我们没有在特定模型中与特定的世界合作,而是在任意模型中使用本特征世界(即世界的通用代表)进行推理。该推理是由序列的序列捕获的,用于元逻辑(在这种情况下,一阶经典逻辑)表达足以捕获对象逻辑的语义。从本质上讲,一个对象逻辑的有效性有效性。该方法通过还原逻辑的角度进行(与更传统的演绎逻辑范式相反),利用减少的空间作为一种介质,以显示对象逻辑和有效性计算中序列中降低的行为等效性。我们并没有整体上研究该技术,而是为构成含义(BI)的逻辑说明了这一点,因此IPL和Mill(无否定)也得到了处理。直观地,BI是直觉命题逻辑和乘法直觉线性逻辑的自由组合,它使其元理论非常复杂。关于BI的文献包含许多相似但最终不同的代数结构和满意度关系,这些结构和满意度仅捕获逻辑的片段(尽管很大),或者具有某些连接剂的复杂条款(例如,贝丝(Beth)的脱节条款而不是kripke的条款)。正是这种复杂性促使我们将BI用作这种语义方法的案例研究。

We give a novel approach to proving soundness and completeness for a logic (henceforth: the object-logic) that bypasses truth-in-a-model to work directly with validity. Instead of working with specific worlds in specific models, we reason with eigenworlds (i.e., generic representatives of worlds) in an arbitrary model. This reasoning is captured by a sequent calculus for a meta-logic (in this case, first-order classical logic) expressive enough to capture the semantics of the object-logic. Essentially, one has a calculus of validity for the object-logic. The method proceeds through the perspective of reductive logic (as opposed to the more traditional paradigm of deductive logic), using the space of reductions as a medium for showing the behavioural equivalence of reduction in the sequent calculus for the object-logic and in the validity calculus. Rather than study the technique in general, we illustrate it for the logic of Bunched Implications (BI), thus IPL and MILL (without negation) are also treated. Intuitively, BI is the free combination of intuitionistic propositional logic and multiplicative intuitionistic linear logic, which renders its meta-theory is quite complex. The literature on BI contains many similar, but ultimately different, algebraic structures and satisfaction relations that either capture only fragments of the logic (albeit large ones) or have complex clauses for certain connectives (e.g., Beth's clause for disjunction instead of Kripke's). It is this complexity that motivates us to use BI as a case-study for this approach to semantics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源