论文标题
来自Galah DR3的统计选择的极为贫困的候选者的光谱随访
Spectroscopic follow-up of statistically selected extremely metal-poor star candidates from GALAH DR3
论文作者
论文摘要
大规模恒星光谱调查的出现自然会导致实施机器学习技术来隔离,例如,从完整的数据集中隔离了潜在有趣的恒星的小样本。最近的一个示例是将T-SNE统计方法应用于Galah调查中的$ \ sim $ 600,000恒星光谱,以便确定候选极为金属贫困的样本(EMP,[Fe/H] $ \ leq $ -3)。我们报告了83个GALAH EMP候选者的低分辨率光谱随访的结果,这些候选物缺乏以前的金属性估计。总体而言,发现统计选择是有效的($ \ sim $三分之一的候选者具有低污染物的[Fe/H] $ \ LEQ $ -2.75)($ <$ <$ <$ <$ <$ <$ <$ <$ <$ <$> $> $ -2),并且具有与先前工作一致的金属分配功能。发现五颗星有[fe/h] $ \ leq $ -3.0,其中之一是主要序列的恒星。另外两颗恒星被揭示出了CEMP-$ S $型的碳增强金属贫困(CEMP)恒星,并重新识别了已知的碳恒星。结果表明,采用的统计选择方法是成功的,因此可以将其应用于即将进行的更大的恒星光谱调查,并期望相似的积极结果。
The advent of large-scale stellar spectroscopic surveys naturally leads to the implementation of machine learning techniques to isolate, for example, small sub-samples of potentially interesting stars from the full data set. A recent example is the application of the t-SNE statistical method to $\sim$600,000 stellar spectra from the GALAH survey in order to identify a sample of candidate extremely metal-poor (EMP, [Fe/H] $\leq$ -3) stars. We report the outcome of low-resolution spectroscopic follow-up of 83 GALAH EMP candidates that lack any previous metallicity estimates. Overall, the statistical selection is found to be efficient ($\sim$one-third of the candidates have [Fe/H] $\leq$ -2.75) with low contamination ($<$10% have [Fe/H] $>$ -2), and with a metallicity distribution function that is consistent with previous work. Five stars are found to have [Fe/H] $\leq$ -3.0, one of which is a main sequence turnoff star. Two other stars are revealed as likely carbon-enhanced metal-poor (CEMP) stars of type CEMP-$s$, and a known carbon star is re-identified. The results indicate that the statistical selection approach employed was successful, and therefore it can be applied to forthcoming even larger stellar spectroscopic surveys with the expectation of similar positive outcomes.