论文标题
部分可观测时空混沌系统的无模型预测
Inverse thermodynamic uncertainty relations: general upper bounds on the fluctuations of trajectory observables
论文作者
论文摘要
热力学不确定性关系(TURS)是动态可观察物的波动大小的一般下限。它们具有重要的后果,其中之一是,电流的估计精度受到熵产生量的限制。在这里,我们证明了对连续时间马尔可夫链的任何线性组合(包括所有时间整合电流或动态活动)的波动大小的一般上限。我们通过集中限制技术获得这些一般关系。这些``反向turs''始终有效,不仅在长期限制下。我们使用一个简单的模型来说明我们的分析结果,并讨论这些新关系的更广泛含义。
Thermodynamic uncertainty relations (TURs) are general lower bounds on the size of fluctutations of dynamical observables. They have important consequences, one being that the precision of estimation of a current is limited by the amount of entropy production. Here we prove the existence of general upper bounds on the size of fluctuations of any linear combination of fluxes (including all time-integrated currents or dynamical activities) for continuous-time Markov chains. We obtain these general relations by means of concentration bound techniques. These ``inverse TURs'' are valid for all times and not only in the long time limit. We illustrate our analytical results with a simple model, and discuss wider implications of these new relations.