论文标题
结构常数$ \ Mathcal {n} = 4 $ sym和变量的分离
Structure Constants in $\mathcal{N} = 4$ SYM and Separation of Variables
论文作者
论文摘要
我们提出了一个新的框架,用于计算平面$ \ Mathcal {n} = 4 $ super yang-mills中的三点函数,其中这些相关器采用变量类型分离的多个积分的形式。我们在该理论的非紧凑型SL(2)扇区中的领先和临近领先顺序的弱耦合中测试这种形式主义,并一直到紧凑型SU(2)扇区的近代到领先的顺序。我们发现证据表明还可以纳入包装效果。
We propose a new framework for computing three-point functions in planar $\mathcal{N}=4$ super Yang-Mills where these correlators take the form of multiple integrals of Separation of Variables type. We test this formalism at weak coupling at leading and next-to-leading orders in a non-compact SL(2) sector of the theory and all the way to next-to-next-to-leading orders for a compact SU(2) sector. We find evidence that wrapping effects can also be incorporated.