论文标题
磁场不抑制低金属性矮星系中的全球恒星形成
Magnetic fields do not suppress global star formation in low metallicity dwarf galaxies
论文作者
论文摘要
许多研究得出结论,磁场抑制了分子云中的恒星形成,像星系一样抑制了银河系。但是,这些研究大多数基于达到饱和水平的全面发达的领域,几乎没有研究最初的弱原始场如何影响低金属性环境中的恒星形成。在本文中,我们研究了弱初始场对低金属矮星系的影响。我们对五个孤立的矮星系进行了高分辨率AREPO模拟。两个模型是流体动力学的,两个模型的起始磁场为10 $^{ - 6}μ$ g和不同的亚极性金属度,一个开始于10 $^{ - 2}μ$ g的饱和场开始。所有模型均包括一个非平衡,时间依赖性的化学网络,其中包括从环境紫外线场上屏蔽气体的影响。水槽颗粒直接从气体的重力塌陷中形成,被视为可以吸收气体的星形团块。我们改变了环境均匀的远离紫外线,宇宙射线电离速率在太阳值的1 \%和10 \%之间。我们发现磁场对全球恒星形成率的影响很小,这与一些先前发表的结果处于紧张状态。我们进一步发现,初始场强对全球恒星形成率的影响很小。我们表明,分子氢和冷气的质量分数增加,以及垂直气体速度散布和作用在弱场模型中的磁场的变化,克服了恒星形成中的预期抑制。
Many studies concluded that magnetic fields suppress star formation in molecular clouds and Milky Way like galaxies. However, most of these studies are based on fully developed fields that have reached the saturation level, with little work on investigating how an initial weak primordial field affects star formation in low metallicity environments. In this paper, we investigate the impact of a weak initial field on low metallicity dwarf galaxies. We perform high-resolution AREPO simulations of five isolated dwarf galaxies. Two models are hydrodynamical, two start with a primordial magnetic field of 10$^{-6} μ$G and different sub-solar metallicities, and one starts with a saturated field of 10$^{-2} μ$G. All models include a non-equilibrium, time-dependent chemical network that includes the effects of gas shielding from the ambient ultraviolet field. Sink particles form directly from the gravitational collapse of gas and are treated as star-forming clumps that can accrete gas. We vary the ambient uniform far ultraviolet field, and cosmic ray ionization rate between 1\% and 10\% of solar values. We find that the magnetic field has little impact on the global star formation rate, which is in tension with some previously published results. We further find that the initial field strength has little impact on the global star formation rate. We show that an increase in the mass fractions of both molecular hydrogen and cold gas, along with changes in the perpendicular gas velocity dispersion and the magnetic field acting in the weak-field model, overcome the expected suppression in star formation.