论文标题
Koopman操作员的非线性数据驱动近似
Nonlinear Data-Driven Approximation of the Koopman Operator
论文作者
论文摘要
Koopman分析提供了一个通用框架,可以从该框架上分析非线性操作员在无限尺寸可观察空间上的线性操作员。该理论框架为广泛使用的动态模式分解算法提供了严格的基础。尽管事实证明,这种方法在分析时间序列数据中非常有用,但所得的线性模型通常必须具有高顺序才能准确地近似于基本的非线性行为。此问题给培训数据带来了固有的风险,从而限制了预测能力。相比之下,这项工作探讨了Koopman操作员行动的非线性数据驱动估计的策略。为有和没有控制的系统提供了产生非线性模型的一般策略。随后对所得的非线性方程式对低排名的投影会为基础动力学系统产生低阶表示。在这项工作中考虑的计算和实验示例中,Koopman操作员的线性估计器通常只能为可观察到的动态提供短期预测,而可比较的非线性估计器为实质上更长的时间尺度提供了准确的预测,并复制无限时间的行为,使线性预测因子无法进行。
Koopman analysis provides a general framework from which to analyze a nonlinear dynamical system in terms of a linear operator acting on an infinite-dimensional observable space. This theoretical framework provides a rigorous underpinning for widely used dynamic mode decomposition algorithms. While such methods have proven to be remarkably useful in the analysis of time-series data, the resulting linear models must generally be of high order to accurately approximate fundamentally nonlinear behaviors. This issue poses an inherent risk of overfitting to training data thereby limiting predictive capabilities. By contrast, this work explores strategies for nonlinear data-driven estimation of the action of the Koopman operator. General strategies that yield nonlinear models are presented for systems both with and without control. Subsequent projection of the resulting nonlinear equations onto a low-rank basis yields a low order representation for the underlying dynamical system. In both computational and experimental examples considered in this work, linear estimators of the Koopman operator are generally only able to provide short-term predictions for the observable dynamics while comparable nonlinear estimators provide accurate predictions on substantially longer timescales and replicate infinite-time behaviors that linear predictors cannot.