论文标题
卡拉比对称性和连续性方法
Calabi Symmetry and the Continuity Method
论文作者
论文摘要
我们研究La Nave和Tian的连续性方法的收敛性和曲率在广义的Hirzebruch表面上。我们表明,Gromov-Hausdorff收敛类似于Kahler-Icci流的收敛并获得曲率估计。我们还表明,连续性方法的一般解决方案存在或始终存在,或者标量曲率会爆炸。已知这种行为是由Kahler-Ricci流动表现出来的。
We study the convergence and curvature blow up of La Nave and Tian's continuity method on a generalised Hirzebruch surface. We show that the Gromov-Hausdorff convergence is similar to that of the Kahler-Ricci flow and obtain curvature estimates. We also show that a general solution to the continuity method either exist or all times, or the scalar curvature blows up. This behavior is known to be exhibited by the Kahler-Ricci flow.