论文标题
建模半导体旋转Qubits及其电荷噪声环境以进行量子门效率估算
Modelling semiconductor spin qubits and their charge noise environment for quantum gate fidelity estimation
论文作者
论文摘要
限制在半导体量子点中的电子的自旋目前是量子位(Qubit)实现的有前途的候选者。利用现有的CMOS集成技术,此类设备可以为大型量子计算提供平台。但是,缺乏将设备的物理设计和操作参数桥接到量子能量空间的量子机械框架。此外,由固有或诱导的自旋轨道交流(SOI)引入的旋转旋转使量子的旋转暴露,以充电噪声,从而损害其相干性能并诱导量子栅极误差。我们在这里提出了双量子点(DQD)设备及其电荷噪声环境的共同建模框架。我们结合使用静电势求解器,完整的配置交互量子机械方法和两级 - 透透透 - 透透量模型来研究逼真的设备设计和操作条件中的量子门性能。我们将开发的模型与量子点的单个电子溶液一起使用,以在充电噪声的情况下模拟一倍和两倍的门。我们发现量子门误差与量子点限制频率之间存在逆相关性。我们在典型的TLF密度下在模拟的SI-MOS设备中计算X-Gate保真度> 97%。我们还发现,在存在相同密度的TLF的情况下,交换驱动的两分量掉期门在忠诚度下降至91%,对电荷噪声显示出更高的敏感性。我们进一步研究了不同TLF密度下的单量子门和两倍门的保真度。我们发现,鉴于量子点的尺寸很小,量子门对噪声源和量子点之间的距离的敏感性会在量子门忠诚度中产生强大的可变性,从而损害了缩放量子的Qubit Technologies设备的产生。
The spin of an electron confined in semiconductor quantum dots is currently a promising candidate for quantum bit (qubit) implementations. Taking advantage of existing CMOS integration technologies, such devices can offer a platform for large scale quantum computation. However, a quantum mechanical framework bridging a device's physical design and operational parameters to the qubit energy space is lacking. Furthermore, the spin to charge coupling introduced by intrinsic or induced Spin-Orbit-Interaction (SOI) exposes the qubits to charge noise compromising their coherence properties and inducing quantum gate errors. We present here a co-modelling framework for double quantum dot (DQD) devices and their charge noise environment. We use a combination of an electrostatic potential solver, full configuration interaction quantum mechanical methods and two-level-fluctuator models to study the quantum gate performance in realistic device designs and operation conditions. We utilize the developed models together alongside the single electron solutions of the quantum dots to simulate one- and two- qubit gates in the presence of charge noise. We find an inverse correlation between quantum gate errors and quantum dot confinement frequencies. We calculate X-gate fidelities >97% in the simulated Si-MOS devices at a typical TLF densities. We also find that exchange driven two-qubit SWAP gates show higher sensitivity to charge noise with fidelities down to 91% in the presence of the same density of TLFs. We further investigate the one- and two- qubit gate fidelities at different TLF densities. We find that given the small size of the quantum dots, sensitivity of a quantum gate to the distance between the noise sources and the quantum dot creates a strong variability in the quantum gate fidelities which can compromise the device yields in scaled qubit technologies.