论文标题

几何艾森斯坦系列的惠特克系数

Whittaker coefficients of geometric Eisenstein series

论文作者

Taylor, Jeremy

论文摘要

几何Langlands预测,Eisenstein系列的Whittaker系数与$ \ check {N} $ - 本地系统的功能之间的同构。我们通过将Eisenstein系列的Whittaker系数解释为分解同源性,然后援引Beilinson和Drinfeld的手性包围代数的手性同源性。

Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of $\check{N}$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld's formula for chiral homology of a chiral enveloping algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源