论文标题
库特:具有错误发现率控制的传感器网络上的分散多个测试
QuTE: decentralized multiple testing on sensor networks with false discovery rate control
论文作者
论文摘要
本文设计了分散的多个假设检验的方法,这些方法在配备错误发现率(FDR)的可证明保证的图表上。我们考虑了不同的代理位于无向图的节点上的设置,并且每个代理都具有与其节点局部的一个或多个假设相对应的p值。每个代理商必须仅通过与邻居进行交流来拒绝其一个或多个本地假设的单独决定,并以联合目的是,整个图上的全局FDR必须在预定义的级别上进行控制。我们提出了一个简单的查询测试 - 交换(QUTE)算法的家族,并证明它们可以在P值的独立性或正面依赖性下控制FDR。当图形直径的通信之后,我们的算法将算法还原为Benjamini-Hochberg(BH)算法,当未发生通信或图形为空时,将其算法和Bonferroni过程减少。为了避免通信实价P值,我们开发了一个量化的BH程序,并将其扩展到量化的Qute程序。 Qute在流数据设置中无缝工作,在该数据设置中,每个节点都可以在每个节点上不断更新任何时间。最后,Qute对数据包的任意删除或在每个步骤都会发生变化的图表非常适合,使其特别适合涉及无人机或其他多代理系统的移动传感器网络。我们使用在各种图形结构上具有不同级别的连接性和通信的模拟套件来研究程序的功能,还提供了一个说明性的现实世界示例。
This paper designs methods for decentralized multiple hypothesis testing on graphs that are equipped with provable guarantees on the false discovery rate (FDR). We consider the setting where distinct agents reside on the nodes of an undirected graph, and each agent possesses p-values corresponding to one or more hypotheses local to its node. Each agent must individually decide whether to reject one or more of its local hypotheses by only communicating with its neighbors, with the joint aim that the global FDR over the entire graph must be controlled at a predefined level. We propose a simple decentralized family of Query-Test-Exchange (QuTE) algorithms and prove that they can control FDR under independence or positive dependence of the p-values. Our algorithm reduces to the Benjamini-Hochberg (BH) algorithm when after graph-diameter rounds of communication, and to the Bonferroni procedure when no communication has occurred or the graph is empty. To avoid communicating real-valued p-values, we develop a quantized BH procedure, and extend it to a quantized QuTE procedure. QuTE works seamlessly in streaming data settings, where anytime-valid p-values may be continually updated at each node. Last, QuTE is robust to arbitrary dropping of packets, or a graph that changes at every step, making it particularly suitable to mobile sensor networks involving drones or other multi-agent systems. We study the power of our procedure using a simulation suite of different levels of connectivity and communication on a variety of graph structures, and also provide an illustrative real-world example.