论文标题

量子互联网中的联合边缘学习的隐私权分配智能资源分配

Privacy-preserving Intelligent Resource Allocation for Federated Edge Learning in Quantum Internet

论文作者

Xu, Minrui, Niyato, Dusit, Yang, Zhaohui, Xiong, Zehui, Kang, Jiawen, Kim, Dong In, Xuemin, Shen

论文摘要

联合边缘学习(FEL)是分布式机器学习的有希望的范式,可以在协作培训全球模型的同时保留数据隐私。但是,由于通过传统的加密方案交换加密密钥的风险,FEL仍面临模型机密性问题。因此,在本文中,我们提出了一个基于量子密钥分布(QKD)的理想安全性的量子安全的FEL系统的层次结构,以促进公共密钥和模型加密,以防止窃听攻击。具体而言,我们提出了一个随机资源分配模型,以加密有效的QKD来加密FEL密钥和模型。在FEL系统中,远程FEL工人通过量子保护的频道连接到集群头,以协作培训汇总的全局模型。但是,由于每个位置的工人数量不可预测,因此无法预测到对服务器的安全模型传输的需求是无法预测的。所提出的系统需要有效地分配有限的QKD资源(即波长),以便通过在随机需求的存在下最小化总成本,通过将提议的体系结构作为随机编程模型提出优化问题。为此,我们提出了一个基于联合加强学习的资源分配方案,可以在没有完整的状态信息的情况下解决拟议的模型。提出的计划使QKD经理和控制者能够培训全球QKD资源分配政策,同时保持其本地私人体验。数值结果表明,与最先进的方案相比,所提出的计划可以成功实现不确定需求的成本最小化目标,同时将训练效率提高约50%。

Federated edge learning (FEL) is a promising paradigm of distributed machine learning that can preserve data privacy while training the global model collaboratively. However, FEL is still facing model confidentiality issues due to eavesdropping risks of exchanging cryptographic keys through traditional encryption schemes. Therefore, in this paper, we propose a hierarchical architecture for quantum-secured FEL systems with ideal security based on the quantum key distribution (QKD) to facilitate public key and model encryption against eavesdropping attacks. Specifically, we propose a stochastic resource allocation model for efficient QKD to encrypt FEL keys and models. In FEL systems, remote FEL workers are connected to cluster heads via quantum-secured channels to train an aggregated global model collaboratively. However, due to the unpredictable number of workers at each location, the demand for secret-key rates to support secure model transmission to the server is unpredictable. The proposed systems need to efficiently allocate limited QKD resources (i.e., wavelengths) such that the total cost is minimized in the presence of stochastic demand by formulating the optimization problem for the proposed architecture as a stochastic programming model. To this end, we propose a federated reinforcement learning-based resource allocation scheme to solve the proposed model without complete state information. The proposed scheme enables QKD managers and controllers to train a global QKD resource allocation policy while keeping their private experiences local. Numerical results demonstrate that the proposed schemes can successfully achieve the cost-minimizing objective under uncertain demand while improving the training efficiency by about 50\% compared to state-of-the-art schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源