论文标题

Skeleton2Humanoid:为身体上的运动动画字符

Skeleton2Humanoid: Animating Simulated Characters for Physically-plausible Motion In-betweening

论文作者

Li, Yunhao, Yu, Zhenbo, Zhu, Yucheng, Ni, Bingbing, Zhai, Guangtao, Shen, Wei

论文摘要

人类运动合成是数字双胞胎和元元中各种应用的长期问题。但是,现代深度学习的运动合成方法几乎没有考虑合成动作的物理合理性,因此它们通常会产生不切实际的人类动作。为了解决此问题,我们提出了一个系统``skeleton2humanoid'',该系统通过在物理模拟器中正式化合成的骨骼运动来在测试时间执行面向物理的运动校正。具体而言,我们的系统由三个顺序阶段组成:(i)测试时间运动合成网络适应性,(ii)基于强化学习(RL)的人形匹配和(iii)运动模仿的骨架。第一阶段引入了测试时间适应策略,该策略通过优化骨架关节位置来改善合成人类骨骼运动的物理合理性。第二阶段执行分析逆运动学策略,该策略将优化的人类骨架运动转换为物理模拟器中的人形机器人运动,然后可以将转换后的类人体机器人运动作为RL策略模仿的参考运动。第三阶段引入了一项课程残留力控制政策,该政策将人形机器人驱动到模仿物理定律转换参考动作。我们在典型的人类运动综合任务(运动中运动)上验证系统。在具有挑战性的LAFAN1数据集上的实验表明,就身体上的合理性和准确性而言,我们的系统可以显着胜过先验方法。代码将出于研究目的发布:https://github.com/michaelliyunhao/skeleton2humanoid

Human motion synthesis is a long-standing problem with various applications in digital twins and the Metaverse. However, modern deep learning based motion synthesis approaches barely consider the physical plausibility of synthesized motions and consequently they usually produce unrealistic human motions. In order to solve this problem, we propose a system ``Skeleton2Humanoid'' which performs physics-oriented motion correction at test time by regularizing synthesized skeleton motions in a physics simulator. Concretely, our system consists of three sequential stages: (I) test time motion synthesis network adaptation, (II) skeleton to humanoid matching and (III) motion imitation based on reinforcement learning (RL). Stage I introduces a test time adaptation strategy, which improves the physical plausibility of synthesized human skeleton motions by optimizing skeleton joint locations. Stage II performs an analytical inverse kinematics strategy, which converts the optimized human skeleton motions to humanoid robot motions in a physics simulator, then the converted humanoid robot motions can be served as reference motions for the RL policy to imitate. Stage III introduces a curriculum residual force control policy, which drives the humanoid robot to mimic complex converted reference motions in accordance with the physical law. We verify our system on a typical human motion synthesis task, motion-in-betweening. Experiments on the challenging LaFAN1 dataset show our system can outperform prior methods significantly in terms of both physical plausibility and accuracy. Code will be released for research purposes at: https://github.com/michaelliyunhao/Skeleton2Humanoid

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源