论文标题

关于组合优化的量子退火硬件的新兴潜力

On the Emerging Potential of Quantum Annealing Hardware for Combinatorial Optimization

论文作者

Tasseff, Byron, Albash, Tameem, Morrell, Zachary, Vuffray, Marc, Lokhov, Andrey Y., Misra, Sidhant, Coffrin, Carleton

论文摘要

在过去的十年中,量子退火硬件对组合优化的有用性一直是许多争论的主题。到目前为止,实验基准研究表明,量子退火硬件不能比最新优化方法提供无可辩驳的性能增长。但是,随着该硬件的不断发展,每次新的迭代都会提高性能,并需要进一步的基准测试。为此,这项工作对D-Wave Systems的最新优势性能更新计算机进行了优化性能评估,该计算机可以用超过5,000个二进制决策变量和40,000个二次术语来本质上解决稀疏无约束的二次优化问题。我们证明,存在量子退火器可以提供运行时间优势的既定经典解决方案方法的运行时间优势,这些方法代表了当前的最新方法,用于基准量子退火硬件。尽管这项工作并没有为这项新兴优化技术提供不可理解的绩效益处的有力证据,但它确实表现出令人鼓舞的进步,这表明了将来对实际优化任务的潜在影响。

Over the past decade, the usefulness of quantum annealing hardware for combinatorial optimization has been the subject of much debate. Thus far, experimental benchmarking studies have indicated that quantum annealing hardware does not provide an irrefutable performance gain over state-of-the-art optimization methods. However, as this hardware continues to evolve, each new iteration brings improved performance and warrants further benchmarking. To that end, this work conducts an optimization performance assessment of D-Wave Systems' most recent Advantage Performance Update computer, which can natively solve sparse unconstrained quadratic optimization problems with over 5,000 binary decision variables and 40,000 quadratic terms. We demonstrate that classes of contrived problems exist where this quantum annealer can provide run time benefits over a collection of established classical solution methods that represent the current state-of-the-art for benchmarking quantum annealing hardware. Although this work does not present strong evidence of an irrefutable performance benefit for this emerging optimization technology, it does exhibit encouraging progress, signaling the potential impacts on practical optimization tasks in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源