论文标题
如何使您的近似算法私有:黑盒差异私密的转换,用于可调的近似算法,具有低灵敏度的功能
How to Make Your Approximation Algorithm Private: A Black-Box Differentially-Private Transformation for Tunable Approximation Algorithms of Functions with Low Sensitivity
论文作者
论文摘要
我们开发了一个框架,用于以黑盒方式将某些近似算法有效地转换为差异私密的变体。具体而言,我们的结果集中在算法上,该算法A输出近似值$(1-a)f(x)-K \ leq a(x)\ leq(1+a)f(x)+k $,其中$ k \ in \ athbb {r} r} _ {r} _ {\ geq 0} $ inditive and Inlivitivilise和$在运行时间/空间中仅产生多项式爆炸时,被“陷入”。我们表明,只要函数F具有较小的全球敏感性,就可以将这种算法做出DP而不牺牲准确性。我们通过应用Nissim,RaskHodnikova和Smith(Smith)(Smith和Smith(Smith)(STEC)开发的平滑灵敏度来实现这些结果。 我们的框架自然适用于将非私人FPRA和FPTA算法转换为$ε$ -DP近似算法,在前情况下需要额外的后处理步骤。我们将我们的框架应用于均匀时间和透明空间算法的上下文,同时在参数的有意义范围内保留算法的性质。我们的结果包括第一个(据我们所知)$ε$ -EDGE DP SUBLINEAR时间算法,用于估计三角形的数量,连接组件的数量以及图的最小跨度树的重量。在流算算法的领域,我们的结果包括用于估计LP-norms,不同的元素和加权最小生成树的$ε$ -DP算法,仅插入插入和旋转栅极。我们的转换还提供了平滑直方图框架的私有版本,该版本通常用于将流算法转换为滑动窗口变体,并实现了许多问题的乘法近似,例如估计LP-norms,不同的元素,以及最长的最长增长的分子。
We develop a framework for efficiently transforming certain approximation algorithms into differentially-private variants, in a black-box manner. Specifically, our results focus on algorithms A that output an approximation to a function f of the form $(1-a)f(x)-k \leq A(x) \leq (1+a)f(x)+k$, where $k \in \mathbb{R}_{\geq 0}$ denotes additive error and $a \in [0,1)$ denotes multiplicative error can be``tuned" to small-enough values while incurring only a polynomial blowup in the running time/space. We show that such algorithms can be made DP without sacrificing accuracy, as long as the function f has small global sensitivity. We achieve these results by applying the smooth sensitivity framework developed by Nissim, Raskhodnikova, and Smith (STOC 2007). Our framework naturally applies to transform non-private FPRAS and FPTAS algorithms into $ε$-DP approximation algorithms where the former case requires an additional postprocessing step. We apply our framework in the context of sublinear-time and sublinear-space algorithms, while preserving the nature of the algorithm in meaningful ranges of the parameters. Our results include the first (to the best of our knowledge) $ε$-edge DP sublinear-time algorithm for estimating the number of triangles, the number of connected components, and the weight of a minimum spanning tree of a graph. In the area of streaming algorithms, our results include $ε$-DP algorithms for estimating Lp-norms, distinct elements, and weighted minimum spanning tree for both insertion-only and turnstile streams. Our transformation also provides a private version of the smooth histogram framework, which is commonly used for converting streaming algorithms into sliding window variants, and achieves a multiplicative approximation to many problems, such as estimating Lp-norms, distinct elements, and the length of the longest increasing subsequence.