论文标题

部分可观测时空混沌系统的无模型预测

Gapped Lineon and Fracton Models on Graphs

论文作者

Gorantla, Pranay, Lam, Ho Tat, Seiberg, Nathan, Shao, Shu-Heng

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We introduce a $\mathbb{Z}_N$ stabilizer code that can be defined on any spatial lattice of the form $Γ\times C_{L_z}$, where $Γ$ is a general graph. We also present the low-energy limit of this stabilizer code as a Euclidean lattice action, which we refer to as the anisotropic $\mathbb{Z}_N$ Laplacian model. It is gapped, robust (i.e., stable under small deformations), and has lineons. Its ground state degeneracy (GSD) is expressed in terms of a "mod $N$-reduction" of the Jacobian group of the graph $Γ$. In the special case when space is an $L\times L\times L_z$ cubic lattice, the logarithm of the GSD depends on $L$ in an erratic way and grows no faster than $O(L)$. We also discuss another gapped model, the $\mathbb{Z}_N$ Laplacian model, which can be defined on any graph. It has fractons and a similarly strange GSD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源