论文标题

部分可观测时空混沌系统的无模型预测

Reconstructing parton collisions with machine learning techniques

论文作者

Sborlini, German F. R., Rentería-Estrada, David F., Hernández-Pinto, Roger J., Zurita, Pia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Having access to the parton-level kinematics is important for understanding the internal dynamics of particle collisions. Here, we present new results aiming to an efficient reconstruction of parton collisions using machine-learning techniques. By simulating the collider events, we related experimentally-accessible quantities with the momentum fractions of the involved partons. We used photon-hadron production to exploit the cleanliness of the photon signal, including up to NLO QCD-QED corrections. Neural networks led to an outstanding reconstruction efficiency, suggesting a powerful strategy for unveiling the behaviour of the fundamental bricks of matter in high-energy collisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源