论文标题
人体姿势和形状估计的时空趋势推理来自视频
Spatio-temporal Tendency Reasoning for Human Body Pose and Shape Estimation from Videos
论文作者
论文摘要
在本文中,我们提出了一个时空趋势推理(STR)网络,用于从视频中恢复人体姿势和形状。先前的方法集中在如何扩展3D人类数据集和基于时间的学习中,以促进准确性和时间平滑。与它们不同的是,我们的ST旨在通过时间和空间趋势在不受约束的环境中学习准确和自然的运动序列,并充分发掘现有视频数据的时空特征。为此,我们的STR分别学习了时间和空间维度中特征的表示,以集中于更强大的时空特征。更具体地说,对于有效的时间建模,我们首先提出了时间趋势推理(TTR)模块。 TTR在视频序列中构建了时间维的层次残差连接表示形式,以有效地推定时间序列的趋势并保留对人类信息的有效传播。同时,为了增强空间表示,我们设计了一种空间趋势增强(Ste)模块,以进一步学习以激发人类运动信息表示中的空间时频域敏感特征。最后,我们引入了集成策略,以整合和完善时空特征表示。大规模可用数据集的大量实验发现表明,我们的STR与三个数据集的最先进的竞争力保持竞争力。我们的代码可在https://github.com/changboyang/str.git上找到。
In this paper, we present a spatio-temporal tendency reasoning (STR) network for recovering human body pose and shape from videos. Previous approaches have focused on how to extend 3D human datasets and temporal-based learning to promote accuracy and temporal smoothing. Different from them, our STR aims to learn accurate and natural motion sequences in an unconstrained environment through temporal and spatial tendency and to fully excavate the spatio-temporal features of existing video data. To this end, our STR learns the representation of features in the temporal and spatial dimensions respectively, to concentrate on a more robust representation of spatio-temporal features. More specifically, for efficient temporal modeling, we first propose a temporal tendency reasoning (TTR) module. TTR constructs a time-dimensional hierarchical residual connection representation within a video sequence to effectively reason temporal sequences' tendencies and retain effective dissemination of human information. Meanwhile, for enhancing the spatial representation, we design a spatial tendency enhancing (STE) module to further learns to excite spatially time-frequency domain sensitive features in human motion information representations. Finally, we introduce integration strategies to integrate and refine the spatio-temporal feature representations. Extensive experimental findings on large-scale publically available datasets reveal that our STR remains competitive with the state-of-the-art on three datasets. Our code are available at https://github.com/Changboyang/STR.git.