论文标题

银河分子云复合物的三维结构升至2.5 kpc

The three-dimensional structure of Galactic molecular cloud complexes out to 2.5 kpc

论文作者

Dharmawardena, T. E., Bailer-Jones, C. A. L., Fouesneau, M., Foreman-Mackey, D., Coronica, P., Colnaghi, T., Müller, T., Henshaw, J.

论文摘要

了解银河分子云的三维结构对于理解云如何受到诸如湍流和磁场等过程的影响以及该结构如何影响恒星形成的过程很重要。随着盖亚任务的到来,该领域取得了巨大进展,该任务的到来提供了准确的距离$ \ sim10^{9} $ start。将这些距离与光学IR推断的灭绝结合在一起,我们使用我们的新颖的三维灰尘映射算法\ texttt {Dustribution}恢复了16个银河分子云配合物的三维结构。使用\ texttt {astrodendro},我们为每个复合物得出一个物理参数的目录。我们恢复具有1到11之间的长宽比的结构,即\ \从近乎球形到非常细长的形状。我们发现云环境中的巨大差异在二维研究中并不明显。例如,附近的加利福尼亚和猎户座云云看起来像是相似的天内,但是我们发现加利福尼亚更像薄片,大量较大,这可以解释其不同的恒星形成率。在我们最遥远的复合体的卡琳娜(Carina),我们观察到尘埃溅的证据,这解释了其测得的低灰尘质量。通过计算这些单个云的总质量,我们证明有必要在三维中定义云边界以获得准确的质量。简单地整合灭绝会高估质量。我们发现,无论您是为云的球形形状还是采取他们的真实范围,拉尔森在质量与半径上的关系都是正确的。

Knowledge of the three-dimensional structure of Galactic molecular clouds is important for understanding how clouds are affected by processes such as turbulence and magnetic fields and how this structure effects star formation within them. Great progress has been made in this field with the arrival of the Gaia mission, which provides accurate distances to $\sim10^{9}$ stars. Combining these distances with extinctions inferred from optical-IR, we recover the three-dimensional structure of 16 Galactic molecular cloud complexes at $\sim1$pc resolution using our novel three-dimensional dust mapping algorithm \texttt{Dustribution}. Using \texttt{astrodendro} we derive a catalogue of physical parameters for each complex. We recover structures with aspect ratios between 1 and 11, i.e.\ everything from near-spherical to very elongated shapes. We find a large variation in cloud environments that is not apparent when studying them in two-dimensions. For example, the nearby California and Orion A clouds look similar on-sky, but we find California to be more sheet-like, and massive, which could explain their different star-formation rates. In Carina, our most distant complex, we observe evidence for dust sputtering, which explains its measured low dust mass. By calculating the total mass of these individual clouds, we demonstrate that it is necessary to define cloud boundaries in three-dimensions in order to obtain an accurate mass; simply integrating the extinction overestimates masses. We find that Larson's relationship on mass vs radius holds true whether you assume a spherical shape for the cloud or take their true extents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源