论文标题

保守封闭体积的流体变形表面的数值方法

A numerical approach for fluid deformable surfaces with conserved enclosed volume

论文作者

Krause, Veit, Voigt, Axel

论文摘要

我们考虑表面有限元和半图表时间踏脚方案,以模拟流体可变形表面。这样的表面是通过弯曲力的不可压缩的表面Navier-Stokes方程来建模的。在这里,我们考虑封闭的表面并执行封闭体积的保护。数值方法建立在高阶表面参数化的基础上,这是表面Navier-Stokes部分的Taylor-Hood元素,地表网格重新分布的几何量的适当近似值以及约束的Lagrange乘数。被考虑的计算示例突出了流体可变形表面的固体流体双重性,并展示了已知对不同子问题最佳的收敛性。

We consider surface finite elements and a semi-implicit time stepping scheme to simulate fluid deformable surfaces. Such surfaces are modeled by incompressible surface Navier-Stokes equations with bending forces. Here, we consider closed surfaces and enforce conservation of the enclosed volume. The numerical approach builds on higher order surface parameterizations, a Taylor-Hood element for the surface Navier-Stokes part, appropriate approximations of the geometric quantities of the surface mesh redistribution and a Lagrange multiplier for the constraint. The considered computational examples highlight the solid-fluid duality of fluid deformable surfaces and demonstrate convergence properties that are known to be optimal for different sub-problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源