论文标题

AI驱动的道路维护检查V2:减少数据依赖并量化道路损坏

AI-Driven Road Maintenance Inspection v2: Reducing Data Dependency & Quantifying Road Damage

论文作者

Iqbal, Haris, Chawla, Hemang, Varma, Arnav, Brouns, Terence, Badar, Ahmed, Arani, Elahe, Zonooz, Bahram

论文摘要

道路基础设施维护检查通常是一项劳动密集型和至关重要的任务,以确保所有道路使用者的安全。在人工智能(AI)中进行的现有最新技术(AI)用于对象检测和分割,有助于自动化大部分此任务,并在足够的带注释的数据下进行自动化。但是,从头开始注释的视频是成本良好的。例如,可以花几天的时间来注释以30 fps录制的5分钟视频注释。因此,我们通过利用少量学习和分布外检测等技术来提出一种自动标签管道,以生成用于道路损害检测的标签。此外,我们的管道包括对每个损害进行量化的危险因素评估,以确定位置的优先级维修,这可能会导致道路维护机械的最佳部署。我们表明,经过这些技术训练的AI模型不仅可以更好地概括地看不见的现实世界数据,但对人类注释的需求减少了,而且还提供了维护紧迫性的估计,从而导致道路更安全。

Road infrastructure maintenance inspection is typically a labor-intensive and critical task to ensure the safety of all road users. Existing state-of-the-art techniques in Artificial Intelligence (AI) for object detection and segmentation help automate a huge chunk of this task given adequate annotated data. However, annotating videos from scratch is cost-prohibitive. For instance, it can take an annotator several days to annotate a 5-minute video recorded at 30 FPS. Hence, we propose an automated labelling pipeline by leveraging techniques like few-shot learning and out-of-distribution detection to generate labels for road damage detection. In addition, our pipeline includes a risk factor assessment for each damage by instance quantification to prioritize locations for repairs which can lead to optimal deployment of road maintenance machinery. We show that the AI models trained with these techniques can not only generalize better to unseen real-world data with reduced requirement for human annotation but also provide an estimate of maintenance urgency, thereby leading to safer roads.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源