论文标题

样本有效的个性化:将用户参数建模为低等级加稀疏组件

Sample-Efficient Personalization: Modeling User Parameters as Low Rank Plus Sparse Components

论文作者

Pal, Soumyabrata, Varshney, Prateek, Jain, Prateek, Thakurta, Abhradeep Guha, Madan, Gagan, Aggarwal, Gaurav, Shenoy, Pradeep, Srivastava, Gaurav

论文摘要

机器学习的个性化(ML)对个人用户/域/企业的预测对于实际推荐系统至关重要。标准个性化方法涉及学习用户/域特定的嵌入,该嵌入被馈入可能限制的固定全球模型中。另一方面,为每个用户/域的个性化/微调模型本身(又称元学习)具有较高的存储/基础架构成本。此外,对可扩展个性化方法的严格理论研究非常有限。为了解决上述问题,我们提出了一种新型的元学习方式方法,该方法将网络权重建模为低级和稀疏组件的总和。这将在低级部分中捕获来自多个个人/用户的常见信息,而稀疏零件则捕获了用户特定的特质。然后,我们在线性设置中研究框架,在该框架中,问题将估计$ r $的总和和使用少量的线性测量值估算的总和。我们提出了一种具有迭代硬阈值的计算有效交替的最小化方法 - AMHT-LRS-学习低级别和稀疏部分。从理论上讲,对于可实现的高斯数据设置,我们表明AMHT-LRS具有几乎最佳的样本复杂性有效地解决了问题。最后,个性化的重大挑战是确保每个用户敏感数据的隐私。我们通过提出我们方法的差异私人变体来缓解这个问题,该变体还配备了强大的概括保证。

Personalization of machine learning (ML) predictions for individual users/domains/enterprises is critical for practical recommendation systems. Standard personalization approaches involve learning a user/domain specific embedding that is fed into a fixed global model which can be limiting. On the other hand, personalizing/fine-tuning model itself for each user/domain -- a.k.a meta-learning -- has high storage/infrastructure cost. Moreover, rigorous theoretical studies of scalable personalization approaches have been very limited. To address the above issues, we propose a novel meta-learning style approach that models network weights as a sum of low-rank and sparse components. This captures common information from multiple individuals/users together in the low-rank part while sparse part captures user-specific idiosyncrasies. We then study the framework in the linear setting, where the problem reduces to that of estimating the sum of a rank-$r$ and a $k$-column sparse matrix using a small number of linear measurements. We propose a computationally efficient alternating minimization method with iterative hard thresholding -- AMHT-LRS -- to learn the low-rank and sparse part. Theoretically, for the realizable Gaussian data setting, we show that AMHT-LRS solves the problem efficiently with nearly optimal sample complexity. Finally, a significant challenge in personalization is ensuring privacy of each user's sensitive data. We alleviate this problem by proposing a differentially private variant of our method that also is equipped with strong generalization guarantees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源